Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{a}{b}=1\frac{1}{2}=>\frac{a}{b}=\frac{3}{2}=>\frac{a}{3}=\frac{b}{2}\)
Theo t/c dãy tỉ số=nhau:
\(\frac{a}{3}=\frac{b}{2}=\frac{a-b}{3-2}=\frac{8}{1}=8\)
\(=>\frac{a}{3}=8=>a=24\)
và \(\frac{b}{2}=8=>b=16\)
Vậy 2 số đó là 24 và 16
Ta có :
\(1\frac{1}{2}=\frac{3}{2}\)
Hiệu số phần bằng nhau là :
3 - 2 = 1 ( phần )
Số bé là :
8 : 1 x 2 = 16
Số lớn là :
8 : 1 x 3 = 24
Đáp Số : số lớn : 24
Số bé : 16
ta có 1\(\frac{1}{2}\)=\(\frac{3}{2}\)
ta có a:b=\(\frac{3}{2}\)
a=\(\frac{3}{2}\)*b
mà a-b=8
hay \(\frac{3}{2}\)*b-b*1=8
b*(\(\frac{3}{2}\)-1)=8
b*\(\frac{1}{2}\)=8
b=8:\(\frac{1}{2}\)
b=16
a=16*\(\frac{3}{2}\)
a=24
\(1\frac{1}{2}=\frac{3}{2}\)
số a là:
8 : (3 - 2) x 3 = 24
số b là:
24 - 8 = 16
Theo bài ra ta có:
\(\frac{a}{b}=1\frac{1}{2}=\frac{3}{2}\)
=>2a=3b
Vì a-b=8=>a=8+b
Khi đó 2.(8+b)=3b
=>16+2b=3b
=>3b-2b=16=>b=16
=>a=8+16=24
Vậy a=24;b=16
Phân số chỉ 60 đơn vị bằng :
1 + \(\frac{5}{7}=\frac{12}{7}\)(số thứ hai)
Số thứ hai là:
60 : \(\frac{12}{7}\)= 35
Số thứ nhất là :
60 - 35 =25
Đáp số:Số thứ nhất:25
Số thứ hai:35
tỉ số giữa a và b là 1/1/2=3/2 ta có a/b=3/2
suy ra a=3/2*b
Mà a-b=8 thay a =3/2*b vào ta có
3/2*b-1*b=8
b*(3/2-1)=8
b*1/2=8
b=8 chia1/2
b=16
a = 16+8=24
c1 chắc có lộn đề r
c2:Gọi 2 số cần tìm lần lượt là a,b
Ta có: 9/11a=6/7b
a+b=258 nên a=258-b
=>9/11*(258-b)=6/7b
2322/11-9/11b=6/7b
6/7b+9/11b=2322/11
66/77+63/77b=2322/11
129/77b=2322/11
b=2322/11:129/77=126
nên a=258-126=132
Vậy 2 số cần tìm lần lượt là 132;126
gọi b là số nhỏ thì (b+7) là số lớn
theo đề ta có pt 1/3*b=1/4*(b+7)
=>1/3*b-1/4*b=7/4
=>4b-3b=21
=>b=21
vậy số lớn là 28; số bé là 21
7/ Em sửa lại đề ạ
Cho hai số thực dương a, b thỏa mãn a+b=4ab
Chứng minh rằng \(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}\ge\frac{1}{2}\)
Đổi biến \(\left(a,b\right)\rightarrow\left(\frac{1}{x},\frac{1}{y}\right)\)
Từ giả thiết => x+y=4
Ta có: BĐT cần CM tương đương với:
\(\frac{\frac{1}{x}}{\frac{4}{y^2}+1}+\frac{\frac{1}{y}}{\frac{4}{x^2}+1}\ge\frac{1}{2}\)\(\Leftrightarrow\frac{y^2}{x\left(4+y^2\right)}+\frac{x^2}{y\left(4+x^2\right)}\ge\frac{1}{2}\left(1\right)\)
Áp dụng BĐT Schwarz, ta có:
∑\(\frac{x^2}{y\left(4+x^2\right)}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)+xy^2+x^2y}=\frac{16}{16+xy^2+x^2y}\)
Ta chỉ cần chứng minh:
\(xy^2+x^2y\le16\Leftrightarrow xy^2+x^2y\le\frac{1}{4}\left(x+y\right)^3\)
\(\Leftrightarrow xy^2+x^2y\le x^3+y^3\)(luôn đúng)
Do đó (1) đúng. BĐT được chứng minh. Dấu "=" xảy ra khi x=y=2⇔a=b=\(\frac{1}{2}\)
6. (chuyên Hòa Bình)
Cho các số dương x, y, z thỏa mãn: xy+zx+4yz=32
Tìm giá trị nhỏ nhất của\(P=x^2+16y^2+16z^2\)
Áp dụng bất đẳng thức Cauchy cho ba số dương x,y,z ta có
\(\hept{\begin{cases}8y^2+\frac{1}{2}x^2\ge2\sqrt{8y^2.\frac{1}{2}x^2}=4xy\\8z^2+\frac{1}{2}x^2\ge2\sqrt{8z^2.\frac{1}{2}x^2}=4xz\\8y^2+8z^2\ge2\sqrt{8y^2.8z^2}=16yz\end{cases}}\)
Cộng từng vế của ba bđt trên ta có
\(P\ge4\left(xy+xz+4yz\right)=4.32=128\)
\(1\frac{1}{2}\)=\(\frac{3}{2}\)
số a là :
8 : ( 3 - 2 ) x 3 = 24
số b là :
24 - 8 = 16
tỉ số % giưa 2 số :
24 : 16 = 1,5 = 150%
đáp số : .......
\(1\frac{1}{2}=\frac{3}{2}\)
số a là:
8 : (3 - 2) x 3 = 24
số b là:
24 - 8 = 16