Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bấm vào câu hỏi tương tự :
Đề bài hơi khác một chút : | b - 45 | ( cách làm tương tự )
Chúc học tốt !!!
NHận xét:
- Với \(x\ge0\Rightarrow\left|x\right|+x=2x\)
- Với \(x< 0\Rightarrow\left|x\right|+x=0\)
=> |x| + x luôn chẵn với mọi x thuộc Z
Áp dụng nhận xét trên thì |b - 15| + b - 15 là số chẵn với b - 15 thuộc Z
=> 2a + 37 chẵn => 2a lẻ <=> a = 0
Khi đó |b - 15| + b - 15 = 38
- Nếu b < 15, ta có: -(b - 15) + b - 15 = 38 <=> 0 = 38 (loại)
- Nếu b \(\ge\) 15, ta có: b - 15 + b - 15 = 38 <=> 2b - 30 = 38 <=> b = 34 (thỏa mãn)
Vậy a = 0, b = 34
a)
\(\frac{16}{2^x}=2\)
\(\Rightarrow2^{x+1}=16\)
\(\Rightarrow2^{x+1}=2^4\)
\(\Rightarrow x+1=4\)
\(\Rightarrow x=3\)
b)
\(\frac{\left(-3\right)^x}{81}=-27\)
\(\Rightarrow\left(-3\right)^x=-\left(3^3.3^4\right)\)
\(\Rightarrow-3^x=-3^7\)
=> x=7
c)
\(8^n:2^n=4\)
\(\Rightarrow2^{3n}:2^n=4\)
\(\Rightarrow2^{3n-n}=4\)
\(\Rightarrow2^{2n}=2^2\)
=>2n=2
=>n=1
a)\(\frac{16}{2^n}=2\)
=>16:2n=2
=>2n=16:2
=>2n=8
b)ko nhớ cách làm
c)8n:2n=4
=>(23)n:2n=22
=>23n:2n=22
=>23n-n=22
=>22n=22
=>2n=2
=>n=1
dc rùi chứ
a) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)
\(\Leftrightarrow m=5\)
b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
\(\Leftrightarrow\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)
\(\Leftrightarrow n=3\)
\(a;\frac{16}{2^n}=2\Leftrightarrow\frac{16}{2^n}=\frac{16}{2^3}\Rightarrow n=3\)
\(b;\frac{\left(-3\right)^n}{81}=-27\Leftrightarrow\frac{\left(-3\right)^n}{81}=\frac{\left(-3\right)^7}{81}\Rightarrow n=7\)
\(c;8^n:2^n=4\Leftrightarrow2^{3n}:2^n=2^2\Leftrightarrow2^{2n}=2^2\Rightarrow2n=2\Leftrightarrow n=1\)
a) \(\frac{16}{2^n}\)= \(2\)=> \(\frac{16}{2^n}\)= \(\frac{16}{8}\)=> 2n = 8 => 2n = 23 => n = 3.
b) Ta có : (-3)n = - 27 . 81
=> (-3)n = - 2187
=> (-3)n = (-3)7
=> n = 7
c) 8n : 2n = 4
=> 4n = 4
=> n = 1.
Bạn tk cho mik nha
a, \(2.16\ge2^n>4\)
\(\Leftrightarrow2.2^4\ge2^n>2^2\)
\(\Leftrightarrow2^5>2^n>2^2\)
\(\Leftrightarrow5\ge n>2\)
Vậy \(n\in\left\{3;4;5\right\}\)
b, Câu b làm tương tự nhé!
a)2^5 lớn hơn hoặc bằng 2^n lớn hơn 2^2
suy ra n=4;3
b)243 nhỏ hơn , bằng 3^n nhỏ hơn hoặc = 243
suy ra n=5
a) \(\dfrac{12}{\left(-2\right)^n}=\dfrac{-12}{8}\)
\(\Rightarrow12.8=\left(-2\right)^n.\left(-12\right)\)
\(\Rightarrow96=\left(-2\right)^n.\left(-12\right)\)
\(\Rightarrow\left(-2\right)^n=\dfrac{96}{-12}\)
\(\Rightarrow\left(-2\right)^n=-8\)
\(\Rightarrow\left(-2\right)^n=\left(-2\right)^3\)
\(\Rightarrow n=3\)
Vậy \(n=3\)
2)
a) \(\dfrac{4}{9}\) và \(\dfrac{5}{8}\) Mẫu chung: 72
\(\dfrac{4}{9}=\dfrac{4.8}{72}=\dfrac{32}{72}\)
\(\dfrac{5}{8}=\dfrac{5.9}{72}=\dfrac{45}{72}\)
Vì \(\dfrac{32}{72}< \dfrac{45}{72}\)
Vậy \(\dfrac{4}{9}< \dfrac{5}{8}\)
b) \(-\sqrt{\dfrac{4}{9}}\) và \(\dfrac{-3}{4}\) MTC: 12
\(-\sqrt{\dfrac{4}{9}}=-\sqrt{\left(\dfrac{2}{3}\right)^2}=-\dfrac{2}{3}=\dfrac{-2.4}{12}=\dfrac{-8}{12}\)
\(-\dfrac{3}{4}=\dfrac{-3.3}{12}=\dfrac{-9}{12}\)
Vì \(\dfrac{-8}{12}>\dfrac{-9}{12}\)
Vậy \(-\sqrt{\dfrac{4}{9}}>\dfrac{-3}{4}\)
a).
\(2.16=2.2^4=2^5\\ 4=2^2\)
theo đề bài, ta có: \(2^5\ge2^n>2^2\Rightarrow5\ge n>2\)
vì n là số tự nhiên nên : \(n=5;4;3\)
b).
\(9.27=3^2.3^3=3^5\\ 243=3^5\)
theo đề bài, ta có: \(3^5\le3^n\le3^5\Rightarrow5\le n\le5\)
=> n=5
Giải:
a)2.16\(\ge\)2n>4
2.24\(\ge\)2n>22
25\(\ge\)2n>22
\(\Rightarrow\)5\(\ge\)n>2
\(\Rightarrow\)n\(\in\){3;4;5}
b)9.27\(\le\)3n\(\le\)243
32.33\(\le\)3n\(\le\)35
35\(\le\)3n\(\le\)35
5\(\le\)n\(\le\)5
\(\Rightarrow\)n=5
Nhận xét:
+) Với x \(\geq\) 0 thì | x | + x = 2x
+) Với x < 0 thì | x | + x = 0
Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z
Áp dụng nhận xét trên thì :
| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z
\(\implies\) 2m + 2015 là số chẵn
\(\implies\) 2m là số lẻ
\(\implies\) m = 0
Khi đó:
| n - 2016 | + n - 2016 = 2016
+) Nếu n < 2016 ta được:
- ( n - 2016 ) + n - 2016 =2016
\(\implies\) 0 = 2016
\(\implies\) vô lí
\(\implies\) loại
+) Nếu n \(\geq\) 2016 ta được :
( n - 2016 ) + n - 2016 = 2016
\(\implies\) n - 2016 + n - 2016 = 2016
\(\implies\) 2n - 2 . 2016 = 2016
\(\implies\) 2 ( n - 2016 ) = 2016
\(\implies\) n - 2016 = 2016 : 2
\(\implies\) n - 2016 = 1008
\(\implies\) n = 1008 + 2016
\(\implies\) n = 3024
\(\implies\) thỏa mãn
Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }
Ta có: \(2\cdot32\ge2^n>8\)
\(\Leftrightarrow2^6\ge2^n>2^3\)
\(\Leftrightarrow n\in\left\{4;5;6\right\}\)