Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3n+13⋮n+1\)
\(3\left(n+1\right)+10⋮n+1\)
\(10⋮n+1\)
\(\Rightarrow n+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Tự lập bảng nha !
https://olm.vn/hoi-dap/detail/63079091964.html
\(3n+13⋮n+1\)
\(\Leftrightarrow n+1\in\left\{2;5;10\right\}\)
hay \(n\in\left\{1;4;9\right\}\)
ta có ; 3n+13 chia hết cho n+1
suy ra 3n+3+10chia het cho n+1
mà 3n+3 chia hết cho n+1
suy ra 10 chia hết cho n+1
suy ra n +1 thuộc ước của 10
suy ra n+1=10;5;2;1;-10;-5;-2;-1
vì n là số tự nhiện suy ra n= 9;4;1;0
ta có ; 3n+13 chia hết cho n+1
suy ra 3n+3+10chia het cho n+1
mà 3n+3 chia hết cho n+1
suy ra 10 chia hết cho n+1
suy ra n +1 thuộc ước của 10
suy ra n+1=10;5;2;1;-10;-5;-2;-1
vì n là số tự nhiện suy ra n= 9;4;1;0
n2 +3 = (n+1)(n-1) + 4
(n+1)(n-1) chia hết cho n-1
=> n2 +3 chia hết cho n-1
=> 4 phải chia hết cho n-1
=> n-1 = Ư(4) = {1;2;4)
vậy n thuộc {2;3;5}
n2+3n+1
= n2-2n+1+5n-5+5
= (n-1)2+5(n-1)+5
Vì (n-1)2 chia hết cho n-1
5(n-1) chia hết cho n-1
=. 5 chia hết cho n-1
n-1 thuộc Ư(5)
bạn cứ lm tiếp là ra
3n + 13 ⋮ n + 1 <=> 3n + 3 + 10 ⋮ n + 1
=> 3( n + 1 ) + 10 ⋮ n + 1 <=> 10 ⋮ n + 1
=> n + 1 thuộc ước của 10 => Ư(10) = { 1 ; 2 ; 5 ; 10 }
=> n + 1 = { 1 ; 2 ; 5 ; 10 } => n = { 0 ; 1 ; 4 ; 9 }
ta có: (2n+9) chia hết cho (n+1) ( n+1 khác 0)
(n+1) chia hết cho (n+1) => 2.(n+1) chia hết cho ( n+1) <=> (2n=2) chia hết cho (n+1)
=> (2n+9) - (2n+2) chia hết cho (n+1)
<=> 7 chia hết cho (n+1)
=> (n+1) thuộc tập ước của 7 mà n là số tự nhiên=> (n+1)= 1 hoặc 7
=> n = 0 hoặc 6
để 3n + 13 chia hết cho 13 thì 3n \(⋮\)13 (1)
13 \(⋮\)13 ( luôn đúng) (2)
từ 1 và 2
\(\Rightarrow n⋮13\)
\(\Rightarrow n\in B\left(13\right)=\left(0;13;26;......\right)\)
KL \(n\in\left(0;13;26;.........\right)\)
Vì : \(3n⋮n\Rightarrow13⋮n\Rightarrow n\in\left\{1;13\right\}\)
3n + 13 \(⋮\)n
=> 3n \(⋮\)n
=> 13 \(⋮\)n
=> n \(\in\) Ư (13) = {1; 13}
Vậy n \(\in\) {1; 13}
Chúc bạn học tốt!