K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2015

1) n+ 4 = (n+ 4n+ 4) - 4n= (n2 + 2)- (2n)= (n2 + 2 + 2n).(n+ 2 - 2n)

Ta có n + 2n + 2 = (n+1)+ 1 > 1 với n là số tự nhiên 

n- 2n + 2 = (n -1)2  + 1 \(\ge\) 1 với n là số tự nhiên

Để  n4 + 4 là số nguyên tố =>  thì  n4 + 4 chỉ có 2 ước là chính nó và 1 

=> n + 2n + 2  = n4 + 4 và n- 2n + 2 = (n -1)2  + 1  = 1 

(n -1)2  + 1  = 1 => n - 1= 0 => n = 1

Vậy n = 1 thì nlà số nguyên tố

5 tháng 8 2015

mấy bn này toàn bình luận, trong khi đó bài mk...

30 tháng 8 2016

còn bài cuối chỉ cần bạn đặt \(n^{1994}+n^{1993}=\left(n+1\right)n^{1993}\)

mà số nguyên tố nếu mình nhớ không nhầm thì thường được biểu diễn dưới dạng là 4k+1 thì phải hay còn dạng nữa mình không nhớ lắm hay là 3k+1 gì đó nữa 

30 tháng 8 2016

lâu nay lười giải quá nhưng thôi mình giải cho bạn.

câu 1: ta gọi 2 số đó là a và b. Ta có:

\(a=x^2+y^2\)

\(b=n^2+m^2\)

=> \(ab=\left(x^2+y^2\right)\left(n^2+m^2\right)\)

bạn nhân nó ra sau đó cộng thêm 2nmxy và trừ 2nmxy rồi áp dụng hằng đẳng thức 1 và 2

9 tháng 4 2016

nhanh hk

9 tháng 4 2016

\(1a.\)

Ta có: \(n^4+4=\left(n^2\right)^2+4n^2+4-4n^2=\left(n^2+2\right)^2-\left(2n\right)^2=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\)

Vì  \(n^2+2n+2>n^2-2n+2\)  với mọi  \(n\in N\) 

nên để  \(n^4+4\)  là số nguyên tố thì  \(n^2-2n+2=1\)  \(\Leftrightarrow\)  \(\left(n-1\right)^2=0\)  \(\Leftrightarrow\)  \(n-1=0\)  \(\Leftrightarrow\)  \(n=1\)

Vậy, với  \(n=1\)  thì   \(n^4+4\)  là số nguyên tố

23 tháng 8 2020

\(B=\left(n+3\right)^2-\left(n-4\right)^2\)

\(=\left(n+3-n+4\right)\left(n+3+n-4\right)\)

\(=7\left(2n-1\right)\)

Dễ thấy B là số nguyên tố khi

\(2n-1=1\Leftrightarrow n=1\)

Vậy n = 1 thì B là số nguyên tố