K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
KD
0
YD
0
Cách này sử dụng các hằng đặng thức đáng nhớ:
\(A^2+2AB+B^2=\left(A+B\right)^2\)
và \(A^2-B^2=\left(A-B\right)\left(A+B\right)\)
Em tìm hiểu nhé!
Đặt : \(x^2-x-1=a^2\) nhân 4 vào 2 vế ta có:
\(4x^2+4x-4=4a^2\Leftrightarrow4x^2+4x+1-5=\left(2a\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(2a\right)^2=5\)
<=> \(\left(2x+1-2a\right)\left(2x+1+2a\right)=5\)
Vì x, a nguyên nên mình sẽ có các trường hợp
TH1: \(\hept{\begin{cases}2x+1-2a=5\\2x+1+2a=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\a=-1\end{cases}}}\)thay vào thỏa mãn
TH2: \(\hept{\begin{cases}2x+1-2a=-5\\2x+1+2a=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\a=1\end{cases}}}\)thử vào thỏa mãn
TH3: \(\hept{\begin{cases}2x+1-2a=-1\\2x+1+2a=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\a=-1\end{cases}}}\)thử vào thỏa mãn
TH4: .....làm tiếp nhé
kết luận x=-2 hoặc x=1
số phương là số gì ?