Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu \(x>3,y>3,z>3\) thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}< \frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\) (không thỏa)
Vậy trong ba số x,y,z tồn tại ít nhất một số nguyên dương không lớn hơn 3
Không mất tính tổng quát, ta giả sử x là số nhỏ nhất. Vậy thì \(x\le y,x\le z\Rightarrow x=1\) , x = 2 hoặc x = 3
Nếu x = 1 thì \(\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow y+z=yz\) (bài toán tìm nghiệm nguyên kinh điển bạn tự làm nhé.)
Nếu x = 2 , x = 3 cũng tương tự.
Ơ hơ mới thấy câu này cách đây vài ngày
Em show lại cách làm :")
Giả sử \(x>3;y>3;z>3\)
thì \(VT< \frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1< 2\left(ktm\right)\)
Vậy trong 3 số x,y,z có ít nhất 1 số nhỏ hơn 3
Mà x,y,z là các số nguyên dương nên
Coi x là số nhỏ hơn 3
\(\left(+\right)x=1\Rightarrow\frac{1}{y}+\frac{1}{z}=1\)
\(\Leftrightarrow y+z=yz\)
\(\Leftrightarrow y-yz-1+z=-1\)
\(\Leftrightarrow\left(y-1\right)\left(z-1\right)=1\)
Dễ tìm được \(y=2;z=2\) \(\left(y=0;z=0\left(ktm\right)\right)\)
\(\left(+\right)x=2\Rightarrow\frac{1}{y}+\frac{1}{z}=\frac{3}{2}\)
\(\Leftrightarrow2y+2z=3yz\)
\(\Leftrightarrow6y-9yz-4+6z=-4\)
\(\Leftrightarrow\left(3y-2\right)\left(3z-2\right)=4\)
\(\Leftrightarrow\left(y,z\right)=\left(1,2\right);\left(2,1\right)\)( một số cặp khác ko thỏa mãn )
Vậy ta có các cặp x,y,z thỏa mãn : \(\left(1,2,2\right);\left(2,2,1\right);\left(2,2,1\right)\)
Vì là số hữu tỉ nên \(\frac{x+y\sqrt{2013}}{y+z\sqrt{2013}}=\frac{a}{b}\left(a;b\inℕ^∗\right)\)
\(\Leftrightarrow bx+by\sqrt{2013}=ay+az\sqrt{2013}\)
\(\Leftrightarrow az\sqrt{2013}-by\sqrt{2013}=bx-ay\)
\(\Leftrightarrow\sqrt{2013}\left(az-by\right)=bx-ay\)
Vì VP là số hữu tỉ nên VT là số hữu tỉ
Mà \(\sqrt{2013}\)là số vô tỉ
Nên \(bx-ay=az-by=0\)
\(\Rightarrow\hept{\begin{cases}bx=ay\\az=by\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{y}=\frac{a}{b}\\\frac{y}{z}=\frac{a}{b}\end{cases}}\)
\(\Rightarrow\frac{x}{y}=\frac{y}{z}\)
\(\Rightarrow xz=y^2\)
Ta có \(x^2+y^2+z^2=x^2+2xz+z^2-y^2=\left(x+z\right)^2-y^2=\left(x-y+z\right)\left(x+y+z\right)\)
Mà \(x^2+y^2+z^2\)là số nguyên tố nên
\(\hept{\begin{cases}x^2+y^2+z^2=x+y+z\\x-y+z=1\end{cases}}\)(Do \(x-y+z< x+y+z\))
Vì x ; y ; z nguyên dương nên \(x;y;z\ge1\Rightarrow\hept{\begin{cases}x^2\ge x\\y^2\ge y\\z^2\ge z\end{cases}}\)
\(\Rightarrow x^2+y^2+z^2\ge x+y+z\)
Dấu "=" xảy ra <=> x = y = z = 1 (thỏa mãn)
Theo đề ra ta có: \(\frac{x+y\sqrt{2013}}{y+z\sqrt{2013}}=\frac{m}{n}\left(m,n\in Z;\left(m,n\right)=1\right).\)
\(\Rightarrow nx+ny\sqrt{2013}=my+mz\sqrt{2013}\Leftrightarrow nx-my=\sqrt{2013}\left(mz-ny\right).\)
\(\Rightarrow\hept{\begin{cases}nx-my=0\\mz-ny=0\end{cases}}\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{m}{n}\Rightarrow xz=y^2\)(vì x,y,n,m đều là các số nguyên )
Khi đó: \(x^2+y^2+z^2=\left(x+z\right)^2-2xz+y^2=\left(x+z\right)^2-2y^2+y^2=\left(x+z\right)^2-y^2\)
\(=\left(x-y+z\right)\left(x+y+z\right)\)
Dễ thấy \(x+y+z\)là số nguyên lớn hơn 1 và \(x^2+y^2+z^2\)là số nguyên tố nên:
\(\hept{\begin{cases}x^2+y^2+z^2=x+y+z\\x-y+z=1\end{cases}\Leftrightarrow}x=y=z=1\)
Thử lại ta thấy x=y=z=1 thỏa mãn .