Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: 2n+2017=a^2 (1) (a,b ∈N)
n+2019=b^2 (2)
Từ (1)⇒ a lẻ ⇒ a=2k+1 (k∈N)
(1) trở thành 2n+2017=(2k+1)^2
⇔ n+1008=2k(k+1)
Vì k(k+1) là tích 2 số tự nhiên liên tiếp ⇒ k(k+1) chia hết cho 2
⇒ n+1008 chia hết cho 4 ⇒n chia hết cho 4 (vì 1008 chia hết cho 4)
Vì n chia hết cho 4 ⇒ b lẻ ⇒b=2h+1 (h∈N)
(2) trở thành n+2019=(2h+1)^2
⇔n+2018=4(h^2+h) (3)
Có: n chia hết cho 4, 2018 không chia hết cho 4
⇒ n+2018 không chia hết cho 4
mà 4(h^2+h) chia hết cho 4
Nên (3) vô lý
Vậy không tồn tại n thỏa mãn
Vì P là số nguyên tố, P là scp
=> Vô lý
Vậy không tìm được giá trị nào
Vì P là số nguyên tố, P là scp
=> Vô lý
Vậy không tìm được giá trị nào
a) 2x + 1 là số chính phương
Đặt 2x + 1 = a2
=> 2x = (a - 1)(a + 1)
=> \(\orbr{\begin{cases}a-1⋮2\\a+1⋮2\end{cases}}\)=> a = 2q \(\pm\)1(q \(\inℕ\))
=> Khi a = 2q + 1 => \(x=2q\left(q+1\right)\)
Khi a = 2a - 1 => x = \(2q\left(q-1\right)\)
Vậy khi x = 2q(q + 1) ; x = 2q(q - 1) thì 8x + 1 số chính phương