Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
@Nguyễn Việt Lâm tui cx cần bài này, trình bày cho tui dới, bik đáp án mà 0 bik trình bày
ĐKXĐ: \(\left\{{}\begin{matrix}x^2+2x+2\ge0\left(\text{luôn đúng}\right)\\\sqrt{x^2+2x+2}-\left(x+1\right)\ge0\left(1\right)\end{matrix}\right.\)
Xét (1), ta có:
\(\sqrt{x^2+2x+2}=\sqrt{\left(x+1\right)^2+1}>\sqrt{\left(x+1\right)^2}=\left|x+1\right|\ge x+1\)
\(\Leftrightarrow\sqrt{x^2+2x+2}-\left(x+1\right)>0\) ; \(\forall x\)
\(\Rightarrow\) BPT (1) luôn đúng với mọi x
Vậy hàm số xác định trên R
Hàm số y được xác định\(\Leftrightarrow\left(x+1\right)\left(x^2+3x+4\right)\ne0\)
\(TH1:x+1\ne0\Leftrightarrow x\ne-1\)
\(TH2:x^2+3x+4\ne0\)
\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2+\frac{3}{2}\ne0\)(luôn đúng)
Vậy \(x\ne-1\)
ĐKXĐ: \(\left\{{}\begin{matrix}x-1>=0\\x^2-4x+3< >0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=1\\\left(x-1\right)\left(x-3\right)< >0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>1\\x< >3\end{matrix}\right.\)