K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2018

a) để hàm số : \(y=\dfrac{1-cosx}{sin2x}\) có nghĩa \(\Leftrightarrow sin2x\ne0\Leftrightarrow2x\ne k\pi\)

\(\Leftrightarrow x\ne\dfrac{k\pi}{2}\left(k\in Z\right)\)

vậy tập xác định của hàm số trên là : \(D=R/\left\{\dfrac{k\pi}{2}\backslash k\in Z\right\}\)

b) để hàm số : \(y=\dfrac{tanx}{cosx+1}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\cosx+1\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\cosx\ne-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k2\pi\\x\ne\pi+k2\pi\end{matrix}\right.\)

vậy tập xác định của hàm số trên là : \(D=R/\left\{\dfrac{\pi}{2}+k2\pi;\pi+k2\pi\backslash k\in Z\right\}\)

b) để hàm số : \(y=\dfrac{1}{sinx}+\dfrac{1}{cosx}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

vậy tập xác định của hàm số trên là : \(D=R/\left\{k\pi;\dfrac{\pi}{2}+k\pi\backslash k\in Z\right\}\)

b) để hàm số : \(y=\sqrt{\dfrac{1}{1-sinx}}\) có nghĩa \(\Leftrightarrow1-sinx>0\)

ta có : \(sinx\le1\forall x\Rightarrow1-sinx\ge0\forall x\) \(\Rightarrow\) hàm số xác định khi \(1-sinx\ne0\) là đủ

\(\Leftrightarrow sinx\ne1\Leftrightarrow x\ne\dfrac{\pi}{2}+k2\pi\)

vậy tập xác định của hàm số trên là : \(D=R/\left\{\dfrac{\pi}{2}+k2\pi\backslash k\in Z\right\}\)

9 tháng 9 2018

1) ta có : tập xác định : \(D=R/\left\{k\pi\backslash k\in Z\right\}\) \(\Rightarrow x\in D\rightarrow-x\in D\forall x\)

đặc \(f\left(x\right)=cot2x-sin5x\)

\(\Rightarrow f\left(-x\right)=cot\left(-2x\right)-sin\left(-5x\right)=-cot2x+sin5x=-f\left(x\right)\)

vậy hàm số này là hàm lẽ

2) ta có : tập xác định : \(D=\left[-\infty;2\right]\cup\left[2;+\infty\right]\) \(\Rightarrow x\in D\rightarrow-x\in D\forall x\)

đặc \(f\left(x\right)=cos\sqrt{x^2-4}\)

\(\Rightarrow f\left(-x\right)=cos\sqrt{\left(-x\right)^2-4}=\sqrt{x^2-4}=f\left(x\right)\)

vậy hàm số này là hàm chẳn

3) ta có : tập xác định : \(D=R/\left\{\dfrac{\pi}{2}+k2\pi\backslash k\in Z\right\}\) \(\Rightarrow x\in D\rightarrow-x\in D\forall x\)

đặc \(f\left(x\right)=\left|tanx-1\right|\)

\(\Rightarrow f\left(-x\right)=\left|tan\left(-x\right)-1\right|=\left|-tanx-1\right|\ne f\left(x\right);f\left(-x\right)\)

vậy hàm số này là hàm không chẳn không lẽ

4) ta có : tập xác định : \(D=R/\left\{\dfrac{\pi}{2}+k2\pi\backslash k\in Z\right\}\) \(\Rightarrow x\in D\rightarrow-x\in D\forall x\)

đặc \(f\left(x\right)=\dfrac{tanx}{cosx+2}\)

\(\Rightarrow f\left(-x\right)=\dfrac{tan\left(-x\right)}{cos\left(-x\right)+2}=\dfrac{-tanx}{cosx+2}=-f\left(x\right)\)

vậy hàm số này là hàm lẽ

5) ta có : tập xác định : \(D=R/\left\{\pi+k2\pi\backslash k\in Z\right\}\) \(\Rightarrow x\in D\rightarrow-x\in D\forall x\)

đặc \(f\left(x\right)=\dfrac{sinx}{1+cosx}\)

\(\Rightarrow f\left(-x\right)=\dfrac{sin\left(-x\right)}{1+cos\left(-x\right)}=\dfrac{-sinx}{1+cosx}=-f\left(x\right)\)

vậy hàm số này là hàm lẽ

22 tháng 5 2017

a) \(D=R\backslash\left\{1\right\}\)
b) \(y\left(x\right)\) xác định khi:
\(cos\dfrac{x}{3}\ne0\Leftrightarrow\dfrac{x}{3}\ne\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x\ne\dfrac{3\pi}{2}+k3\pi\)
\(D=R\backslash\left\{\dfrac{3\pi}{2}+k3\pi\right\};k\in Z\)
c) \(y\left(x\right)\) xác định khi:
\(sin2x\ne0\Leftrightarrow2x\ne k\pi\)\(\Leftrightarrow x\ne\dfrac{k\pi}{2}\).
\(D=R\backslash\left\{\dfrac{k\pi}{2}\right\};k\in Z\)
d) \(y\left(x\right)\) xác định khi:
\(x^2-1\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\).
\(D=R\backslash\left\{1;-1\right\}\)

19 tháng 9 2017

hộ vs ae ơi

AH
Akai Haruma
Giáo viên
2 tháng 10 2018

Lời giải:

Áp dụng các công thức lượng giác:

\(1+\cos x+\cos 2x+\cos 3x\)

\(=(1+\cos 2x)+(\cos x+\cos 3x)\)

\(=2\cos ^2x+2\cos 2x\cos x\)

\(=2\cos x(\cos x+\cos 2x)=2\cos x(\cos x+\cos ^2x-\sin ^2x)\)

\(=2\cos x(\cos x+2\cos ^2x-1)\)

\(\Rightarrow \frac{1+\cos x+\cos 2x+\cos 3x}{2\cos ^2x+\cos x-1}=\frac{2\cos x(\cos x+2\cos ^2x-1)}{2\cos ^2x+\cos x-1}=2\cos x\)

Vậy \(2\cos x=\frac{2}{3}(3-\sqrt{3})\sin x\)

\(\Leftrightarrow \sqrt{3}\cos x=(\sqrt{3}-1)\sin x\)

\(\Rightarrow \tan x=\frac{\sin x}{\cos x}=\frac{\sqrt{3}}{\sqrt{3}-1}\Rightarrow x=k\pi +\arctan \frac{\sqrt{3}}{\sqrt{3}-1}\)

11 tháng 10 2018

dạ e cảm ơn

23 tháng 6 2016

\(x\ne2k\pi;\left(k\in Z\right)\)