Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,b cậu tự làm nha !
c) 6n + 30 chia hết cho n + 1
6n + 6 + 24 chia hết cho n + 1
6(n + 1) + 24 chia hết cho n + 1
=> 24 chia hết cho n + 1
=> n + 1 thuộc Ư(24) = {1; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24}
Xét 4 trường hopjc rồi tìm n nha
d) giống c
g) n2+ n + 5 chia hết cho n - 1
n2 - n + 2n + 5 chia hết cho n -1
n(n - 1) + 2n + 5 chia hết cho n - 1
=> 2n + 5 chia hết cho n - 1
=> 2n - 2 + 7 chia hết cho n -1
=> 2(n - 1) + 7 chia hết cho n - 1
=> 7 chia hết cho n - 1
=> n - 1 thuộc Ư(7) = {1 ; 7}
còn lại giống bài c
h) n2 + 10 chia hết cho n + 1
n2 + n - n + 10 chia hết cho n + 1
n(n + 1) - n + 10 chia hết cho n +1
=> (-n) + 10 chai hết cho n + 1
=> (-n) - 1 + 11 chia hết cho n + 1
=> -(n + 1) + 11 chia hết cho n + 1
=> -11 chia hết cho n + 1
=> n + 1 thuộc Ư(-11) = {1 ; -1 ; 11 ; -11}
Còn lại giống bài c
Cậu áp dụng công thức này nè :
a chia hết cho m
b chia hết cho m
=> a + b hoặc a - b chia hết cho m
Và a chia hết cho m
=> a.n chia hết cho m
Nha!
\(a,10⋮n\Rightarrow n\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5\pm10\right\}.\)
\(\Rightarrow n\in\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
\(b,12⋮n-1\Rightarrow n-1\inƯ\left(12\right)\left\{\pm1;\pm2;\pm3\pm4;\pm6;\pm12\right\}\)
\(d,n+5⋮n+1\Rightarrow n+1+4⋮n+1.\)
mà \(n+1⋮n+1\Rightarrow4⋮n+1\)
\(\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n+1 = 1 => n = 0
n + 1 = -1 => -2
..... tương tự vs 2; -2 ; 4 ; -4
\(e,n+7⋮n+2\Rightarrow n+2+5⋮n+2\)
mà \(n+2⋮n+2\Rightarrow5⋮n+2\)
\(\Rightarrow n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n+2 = 1 => n = -1
n + 2 = -1 => n = 3
.... tương tự vs 5 và -5
\(f,2n+5⋮2n+1\Rightarrow2n+1+4⋮2n+1\)
\(\Rightarrow2n+1⋮2n+1\Rightarrow4⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
...... tự lm
a) n+2 \(\in\)B(3)={0;3;6;9;12;15;18;21;...}
\(\Rightarrow\)n=1;4;7;10;13;16;19;....
b) 4n-5 \(\in\)B(13)={0;13;26;39;42;.....}
\(\Rightarrow\)n=5;18;31;44;47;...
c) 5n-1 \(\in\)B(7)={0;7;14;21;28;35;42;...}
\(\Rightarrow\)n=3
d) 25n+3 \(\in\)B(57)={0;57;114;171;228;285...}
\(\Rightarrow\)n=9