\(x,y\varepsilon Z\)Sao cho: \(x^3+5x-12y=4\) .

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

\(\sqrt{x^2+x+3}=a\left(a\in Z\right).\)

\(\Rightarrow x^2+x+3=a^2\Leftrightarrow4x^2+4x+12=4a^2\Leftrightarrow\left(2x+1\right)^2-\left(2a\right)^2=-11\)

\(_{\Leftrightarrow\left(2x+1-2a\right)\left(2x+1+2a\right)=-11}\)

Sau đó thì dễ rồi vì a,x nguyên tìm nghiệm của -11 là xong

√x2+x+3=a(a∈Z).

⇒x2+x+3=a2⇔4x2+4x+12=4a2⇔(2x+1)2−(2a)2=−11

⇔(2x+1−2a)(2x+1+2a)=−11

Sau đó thì dễ rồi vì a,x nguyên tìm nghiệm của -11 là xong

14 tháng 6 2017

Để \(\sqrt{x^2+x+3}\) nguyên thì

\(\Rightarrow x^2+x+3=a^2\left(a\in Z\right)\)

\(\Leftrightarrow4x^2+4x+12=4a^2\)

\(\Leftrightarrow4a^2-\left(2x+1\right)^2=11\)

\(\Leftrightarrow\left(2a+2x+1\right)\left(2a-2x-1\right)=11\)

\(\Leftrightarrow\left(2a+2x+1,2a-2x-1\right)=\left(1,11;11,1;-1,-11;-11,-1\right)\)

\(\Leftrightarrow\left(a,x\right)=\left(3,-3;3,2;-3,-3;-3,2\right)\)

Vậy ....

17 tháng 9 2018

a) Nếu y chia hết cho 3 thì 4y2 cũng chia hết cho 3. Mà 3x2chia hết cho 3 nên 3x2-4y2chia hết cho 3. Mặt khác: 13 ko chia hết cho 3 nên pt vô nghiệm

Nếu y ko chia hết cho 3 thì: y2chia 3 luôn dư 1 => 4y2 chia 3 dư 1 => 3x2-4y2chia 3 dư 3( vì 3x2 chia hết cho 3)

b) Làm tương tự câu a (ở đây khác dư khi chia cho 4)

c) Pt \(\Leftrightarrow\) x2+5=2(y-2)2. Dễ dàng thấy x ở đây lẻ nên làm x2+5 chia 8 dư 6. Mà 2(y-2)2 chia 8 chỉ có thể dư: 0;2 nên pt vô nghiệm.

d) Pt\(\Leftrightarrow\)(x-2)(x-1)x(x+1)(x+2)=24(5y-1). Nhận thấy VT là tích 5 số nguyên liên tiếp nên chia hết cho 5; còn VP ko chia hết cho 5 nên pt vô nghiệm.

e) Giả sử cả 3 số đều chẵn thì tổng các hiệu sẽ là số chẵn (1)

Giả sử cả 3 số đều lẻ thì tổng các hiệu cũng chẵn (2)

Giả sử trong 3 số có 1 số chẵn 2 số lẻ thì tổng các hiệu cũng chẵn (3)

Giả sử trong 3 số có 1 số lẻ 2 số chẵn thì tổng các hiệu cũng chẵn (4)

Từ (1);(2);(3) và (4) suy ra pt vô nghiệm

Bài làm này chỉ áp dụng với các số nguyên x, y, z thôi bạn nhé

13 tháng 5 2021

Đặt \(\sqrt{x};\sqrt{y};\sqrt{z}\rightarrow a,b,c\), ta có : \(a+b+c=1\)

Tìm min của \(A=\frac{ab}{\sqrt{5a^2+32ab+12b^2}}+\frac{bc}{\sqrt{5b^2+32bc+12c^2}}+\frac{ca}{\sqrt{5c^2+32ca+12a^2}}\)

đến đây thấy giống giống bài bất của HN năm nào ấy nhỉ ?