K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 2 2021

Lời giải:\(\lim\limits\sqrt{\frac{n(u_n+9)}{n+5}}=\lim\limits\sqrt{\frac{u_n+9}{1+\frac{5}{n}}}=\lim\limits\sqrt{u_n+9}=\sqrt{L+9}\)

26 tháng 5 2017

\(limu_n=lim\dfrac{1}{n}=0\); \(limv_n=lim\left(-\dfrac{1}{n}\right)=0\).
\(limf\left(u_n\right)=lim\left(\sqrt{\dfrac{1}{n}}+1\right)=1\).
\(limf\left(v_n\right)=lim\left(2.\dfrac{-1}{n}\right)=lim\dfrac{-2}{n}=0\).
Hai dãy số \(\left(u_n\right)\)\(\left(v_n\right)\) đều có giới hạn 0 khi n tiến ra dương vô cùng nhưng \(limf\left(u_n\right)\ne limf\left(v_n\right)\) nên f không có giới hạn tại \(x=0\).

22 tháng 1 2020

Câu 1.

\(\sqrt{2},\left(\sqrt{2}\right)^2,...,\left(\sqrt{2}\right)^n\) lập thành cấp số nhân có \(u_1=\sqrt{2}=q\) nên

\({u_n} = \sqrt 2 .\dfrac{{1 - {{\left( {\sqrt 2 } \right)}^n}}}{{1 - \sqrt 2 }} = \left( {2 - \sqrt 2 } \right)\left[ {{{\left( {\sqrt 2 } \right)}^n} - 1} \right] \to \lim {u_n} = + \infty \)\(\left\{{}\begin{matrix}a=2-\sqrt{2}>0\\q=\sqrt{2}>1\end{matrix}\right.\)

22 tháng 1 2020

Câu 3.

Ta có biến đổi:

\(\lim \left( {\dfrac{{{n^2} - n}}{{1 - 2{n^2}}} + \dfrac{{2\sin {n^2}}}{{\sqrt n }}} \right) = \lim \dfrac{{{n^2} - n}}{{1 - 2{n^2}}} = \dfrac{1}{2}\)

22 tháng 1 2020

Câu 4.

\(\lim \left( {{n^2}\sin \dfrac{{n\pi }}{5} - 2{n^3}} \right) = \lim {n^3}\left( {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n} - 2} \right) = - \infty \)

\(\lim {n^3} = + \infty ;\lim \left( {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n} - 2} \right) = - 2 \)

\(\left| {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n}} \right| \le \dfrac{1}{n};\lim \dfrac{1}{n} = 0 \Rightarrow \lim \left( {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n} - 2} \right) = - 2\)

22 tháng 1 2020

Câu 5.

Ta có: \(\left\{ \begin{array}{l} 0 \le \left| {{u_n}} \right| \le \dfrac{1}{{{n^2} + 1}} \le \dfrac{1}{n} \to 0\\ 0 \le \left| {{v_n}} \right| \le \dfrac{1}{{{n^2} + 2}} \le \dfrac{1}{n} \to 0 \end{array} \right. \to \lim {u_n} = \lim {v_n} = 0 \to \lim \left( {{u_n} + {v_n}} \right) = 0\)

4 tháng 4 2017

Vì lim = 0 nên || có thể nhỏ hơn một số dương bé tùy ý, kể từ một số hạng nào đó trở đi.

Mặt khác, ta có |un -1| < = || với mọi n. Nếu |un -1| có thể nhỏ hơn một số dương bé tùy ý, kể từ một số hạng nào đó trở đi, nghĩa là lim (un -1) = 0. Do đó lim un = 1.



26 tháng 5 2017

\(lim\dfrac{1}{n^3}=0\)\(\left|u_n-1\right|< \dfrac{1}{n^3}\) nên \(lim\left|u_n-1\right|=0\).
Suy ra: \(lim\left(u_n-1\right)=0\)\(\Leftrightarrow limu_n=1\).

8 tháng 8 2022

1) Có \(u_{n+1}-u_n=\dfrac{1}{2}u^2_n-2u_n+2=\dfrac{1}{2}\left(u_n-2\right)^2\) (1)

+) CM \(u_n>2\) (n thuộc N*)

n=1 : u1= 5/2 > 2 (đúng)

Giả sử n=k, uk > 2 (k thuộc N*)

Ta cần CM n = k + 1. Thật vậy ta có:

\(u_{k+1}=\dfrac{1}{2}u^2_k-u_k+2=\dfrac{1}{2}\left(u_k-2\right)^2+u_k\) (đúng)

Vậy un > 2 (n thuộc N*)        (2)

Từ (1) (2) => un+1 - u> 0, hay un+1 > un

=> (un) là dãy tăng => \(\lim\limits_{n\rightarrow\infty}u_n=+\infty\)

 

2) \(2u_{n+1}=u^2_n-2u_n+4\)

\(\Leftrightarrow2u_{n+1}-4=u^2_n-2u_n\)

\(\Leftrightarrow2\left(u_{n+1}-2\right)=u_n\left(u_n-2\right)\)

\(\Leftrightarrow\dfrac{1}{u_{n+1}-2}=\dfrac{2}{u_n\left(u_n-2\right)}=\dfrac{1}{u_n-2}-\dfrac{1}{u_n}\)

\(\Leftrightarrow\dfrac{1}{u_n}=\dfrac{1}{u_n-2}-\dfrac{1}{u_{n+1}-2}\)

\(S=\dfrac{1}{u_1}+\dfrac{1}{u_2}+...+\dfrac{1}{u_n}\)

\(=\dfrac{1}{u_1-2}-\dfrac{1}{u_2-2}+\dfrac{1}{u_2-2}+...-\dfrac{1}{u_{n+1}-2}\)

\(=\dfrac{1}{u_1-2}-\dfrac{1}{u_{n+1}-2}\)

\(=2-\dfrac{1}{u_{n+1}-2}\)

\(\Leftrightarrow\lim\limits_{n\rightarrow\infty}S=2\)

10 tháng 3 2020

Đặt \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{n\left(n+1\right)}=A\)

\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n}-\frac{1}{n+1}\)

\(\Leftrightarrow A=\frac{n+1}{n+1}-\frac{1}{n+1}=\frac{n}{n+1}\)