Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)
Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)
b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)
Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7
a: Nếu a chẵn, b chẵn thì ab(a+b)=2k*2c*(2k+2c)=4kc(2k+2c) chia hết cho 2
Nếu a,b ko cùng tính chẵn lẻ thì
ab(a+b)=2k(2c+1)(2k+2c+1) chia hết cho 2
Nếu a,b lẻ thì (a+b) chia hết cho 2
=>ab(a+b) chia hết cho 2
b: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)
a) Xét 4 trường hợp :
TH1: a lẻ - b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH2: a chẵn - b lẻ
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH3: a chẵn - b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH4: a lẻ - b lẻ
=> a + b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
Vậy ta có đpcm
b) \(ab-ba=10a+b-10b-a\)
\(=9a-9b=9\left(a-b\right)⋮9\left(đpcm\right)\)
a) Vì số chẵn là số chia hết cho 2 nên ta có:
\(\overline{abc}=\overline{ab}+\overline{bc}+\overline{ca}+\overline{ac}+\overline{cb}+\overline{ba}\)
\(=10a+b+10b+c+10c+a+10a+c+10c+b+10b+a\)
\(=\left(10a+10a+a+a\right)+\left(10b+10b+b+b\right)+\left(10c+10c+c+c\right)\)
\(=22a+22b+22c\)
\(=22\left(a+b+c\right)\)
Vì \(22.\left(a+b+c\right)⋮2\) nên \(\overline{abc}\) là số chẵn ( đpcm )
Vì \(22.\left(a+b+c\right)⋮11\) nên \(\overline{abc}⋮11\) ( đpcm )
Ta có
ab + ba =10a+b+10b+a
=(10a+a)+(10b+b)
=11a+11b=11(a+b)
=> ab + ba chia hết cho 11.
ta có:
ab+ba=(a.10+b)+(b.10+a)=a.11+b.11
vì 11chia hết cho 11 => (a+b).11 chia hết cho 11
=> ab+ba chia hết cho 11
k nha
Ta có : \(\overline{ab}-\overline{ba}=\left(10a+b\right)-\left(10b+a\right)\)
\(=10a+b-10b-a=10a-10b+b-a\)
\(=10\left(a-b\right)-\left(a-b\right)=\left(10-1\right)\left(a-b\right)=9\left(a-b\right)⋮9\)
( Vì \(9⋮9\) ; \(a\ge b\) ) \(\Rightarrow\overline{ab}-\overline{ba}⋮9\)
Vậy \(\overline{ab}-\overline{ba}⋮9\)
Ta có:
\(\overline{ab}=10.a+b\)
\(\overline{ba}=10.b+a\)
\(=>\overline{ab}-\overline{ba}=10a+b-10b+a\)
\(=9a-9b\)
\(=9\left(a-b\right)⋮9\)
\(=>\overline{ab}-\overline{ba}⋮9\left(dpcm\right)\)
Ta có : \(\overline{ab}+\overline{ba}=10a+b+10b+a\)
\(=11\left(a+b\right)\)
và 33 = 11 . 3
mà \(a+b\)không chia hết cho 3
Nên (\(\left(\overline{ab}+\overline{ba};33\right)=11\)
= 11
ti-ck cho ntn này
nhé