Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Mai Hà My - Toán lớp 6 - Học toán với OnlineMath
Kiểm tra lại đề bài nhé!
Tìm \(\overline{ab}\) biết \(\overline{ab}^2-\overline{ba}^2\) là số chính phương
Giải:
Ta có: \(\overline{ab}^2-\overline{ba}^2=\left(a.10+b\right)^2-\left(b.10+a\right)^2\)
\(=99\left(a^2-b^2\right)=9.11.\left(a^2-b^2\right)\)
Vì \(\overline{ab}^2-\overline{ba}^2\)là số chính phương => \(\overline{ab}^2-\overline{ba}^2=9.11.\left(a^2-b^2\right)=3^2.11^2k^2\); k thuộc Z
=> \(a^2-b^2=11k^2\)
Nhận xét: \(\left(a-b\right)\left(a+b\right)=a.a+a.b-a.b+b.b=a^2-b^2\)
=> \(\left(a-b\right)\left(a+b\right)=11k^2\)=> \(\left(a-b\right)\left(a+b\right)⋮11\)(1)
Ta có: a, b là các số tự nhiên từ 1 đến 9 nên \(0\le a-b\le8\); \(2\le a+b\le18\)(2)
Từ (1) ; (2) => a + b = 11
Vậy: \(\overline{ab}^2-\overline{ba}^2=3^2.11^2.\left(a-b\right)\)
Để \(\overline{ab}^2-\overline{ba}^2\) là số chính phương => (a - b ) là số chính phương => a -b = 1 hoặc a - b = 4
+) Với a - b = 1 mà a + b = 11 => a = ( 11+ 1 ) : 2 = 6; b = ( 11 - 1 ) : 2 = 5
=> \(\overline{ab}=65\)
+ Với a - b = 4 mà a + b = 11 => a = ( 11 + 4 ) :2 = 7, 5 ;loại
Vậy số cần tìm là 65.
nobita kun bạn cố lên làm cho mk bài 3 mk **** cho ( lấy nick #)
ab – ba
= a.10+ b – (b.10 + a)
= 9(a – b) = 32 (a-b)
a – b là số chính phương và a>b>0 => a – b =1 hoặc a-b=4
a=4,b=3 hoặc a=7, b=3.
ab = 43 hoặc ab = 73.
Mình làm thế này có đúng không các bạn?
Ta có ab - ba = ( 10a + b ) - ( 10b + a ) = 10a + b - 10b - a = 9a - 9b = 9 ( a - b )
Ta có: 9 = 32 ( Là số chính phương ) nên a - b cũng phải là số chính phương
Theo đề bài ta có: 1 \(\le\) a - b \(\le\) 8
Vì a - b là số chính phương nên a - b \(\in\) { 1;4 }
Với a - b = 1 thì ab \(\in\) { 21;32;43;54;65;76;87;98 }
Loại đi các hợp số, còn 43 là số nguyên tố
Ta có 43 - 34 = 9 = 32
73 - 37 = 36 = 62
a)
p=(2,3,5,7 ...)
p^2=(4,9,25,49...)
p^2+44=(48,53,93..)
có 53 nguyên tố
ds: p=3
b).p=(6,7,8 ...)
2p+1=(13,15,17...)
4p+1=(25,29,33.....)
l25=5.5=> 4p+1 là hợp số
c)p+6=(02,03,05, ...)
p+8 =(04,05,07,....)
p+12=(08,09,11,...)
P+14=(10,11,13,...)
ds: 5,7,11,13
2.
(ab-ba)=97-79=18=2.9 loại
(ab-ba)=93-39= loại 39 ko nguyen tố
(ab-ba)=73-37=26=13.2 loại
(ab-ba)=71-17=54=9.6loại
a>=b
(ab-ba)=11-11=0
ds: ab=11
Do ab - ba là số chính phương. Suy ra ab >ab . suy ra a>b
ta có
ab - ba = 10a+b-10b-a=9a-9b=9*(a-b)=32*(a-b)
Để ab - ba là số chính phương thì a-b là số chính phương mà a-b<20
Suy ra a-b=0;1;4;9
*a-b=0. Suy ra ab =11
*a-b=1. Suy ra ab =67
*a-b=4. Suy ra ab =73
*a-b=9. Suy ra không tồn tại ab
Vậy ab =11;67;73