Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(b-a=2\)
\(\Rightarrow b=a+2\)
Biểu thức trở thành: \(\frac{1}{a}-\frac{1}{a+2}=\frac{2}{143}\)
\(\Leftrightarrow\frac{a+2-a}{a\left(a+2\right)}=\frac{2}{143}\)
\(\Leftrightarrow\frac{2}{a\left(a+2\right)}=\frac{2}{143}\)
\(\Leftrightarrow2\cdot143=2a\left(a+2\right)\)
\(\Leftrightarrow2a^2+4a-286=0\)
\(\Leftrightarrow a^2+2a-143=0\)
\(\Leftrightarrow a^2+13a-11a-143=0\)
\(\Leftrightarrow a\left(a+13\right)-11\left(a+13\right)=0\)
\(\Leftrightarrow\left(a+13\right)\left(a-11\right)=0\)
+) \(a=-13\Rightarrow b=a+2=-13+2=-11\)(loại vì \(a,b\notin N\))
+) \(a=11\Rightarrow b=a+2=11+2=13\) (Nhận)
Vậy cặp \(\left(a,b\right)\)cần tìm là \(\left(11,13\right)\)
\(\frac{1}{a}:\frac{1}{b}=\frac{1}{a}\cdot\frac{b}{1}=\frac{b}{a}=\frac{2}{134}\)
bn tự làm tiếp nha
hk tôt
\(\frac{1}{a}:\frac{1}{b}=\frac{1}{a}\cdot\frac{b}{1}=\frac{b}{a}\)
Mà \(\frac{1}{a}:\frac{1}{b}=\frac{2}{134}\)
\(\Rightarrow\frac{b}{a}=\frac{2}{134}\)
\(\Rightarrow\frac{b}{2}=\frac{a}{134}=\frac{b-a}{2-134}=-\frac{2}{\frac{143}{132}}\)
Đến đây làm nốt nhé !
P/S:Cái này lp 7 thì phải
+)Ta có\(\frac{1}{a}=\frac{1}{b}=\frac{2}{143}\)(1)
+)Ta lại có:b-a=2
=>b=a+2(2)
Thay (2) vào (1) được:
\(\frac{1}{a}=\frac{1}{a+2}=\frac{2}{143}\)
=>\(\frac{1.\left(a+2\right)}{a.1}=\frac{2}{143}\)
=>\(\frac{a+2}{a}=\frac{2}{143}\)
Mà a+2>a
=>\(\frac{a+2}{a}=\frac{2}{143}\)(vô lí)
=>Không tìm được a và b
Chúc bn học tốt
Hoặc bạn xem lại đề nha
a) Mình nghĩ nên sửa lại đề 1 chút: a-b=3
b) Có 4n-9=2(2n+1)-13
Vì 2n+1 chia hết cho 2n+1 => 2(2n+1) chia hết cho 2n+1
Vậy để 2(2n+1)-13 chia hết cho 2n+1
=> 13 chia hết cho 2n+1
n nguyên => 2n+1 nguyên => 2n+1\(\inƯ\left(13\right)=\left\{-13;-1;1;3\right\}\)
Ta có bảng
2n+1 | -13 | -1 | 1 | 3 |
2n | -14 | -2 | 0 | 2 |
n | -7 | -1 | 0 | 1 |
d)Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^n}\)
Ta có: \(\hept{\begin{cases}\frac{1}{2^2}< \frac{1}{1\cdot2}\\......\\\frac{1}{2^n}< \frac{1}{2^{n-1}\cdot2^n}\end{cases}}\)
\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2^{n-1}\cdot2^n}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2^{n-1}}-\frac{1}{2^n}\)
\(\Rightarrow A< 1-\frac{1}{2^n}\)(đpcm)