K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2016

                Ta có: \(b-a=2\)

                     \(\Rightarrow b=a+2\)

            Biểu thức trở thành:    \(\frac{1}{a}-\frac{1}{a+2}=\frac{2}{143}\)

                                        \(\Leftrightarrow\frac{a+2-a}{a\left(a+2\right)}=\frac{2}{143}\)

                                        \(\Leftrightarrow\frac{2}{a\left(a+2\right)}=\frac{2}{143}\)

                                        \(\Leftrightarrow2\cdot143=2a\left(a+2\right)\)

                                        \(\Leftrightarrow2a^2+4a-286=0\)

                                        \(\Leftrightarrow a^2+2a-143=0\)

                                        \(\Leftrightarrow a^2+13a-11a-143=0\)

                                        \(\Leftrightarrow a\left(a+13\right)-11\left(a+13\right)=0\)

                                        \(\Leftrightarrow\left(a+13\right)\left(a-11\right)=0\)

              +) \(a=-13\Rightarrow b=a+2=-13+2=-11\)(loại vì \(a,b\notin N\))

              +) \(a=11\Rightarrow b=a+2=11+2=13\)  (Nhận)

                               Vậy cặp \(\left(a,b\right)\)cần tìm là \(\left(11,13\right)\)                    

                                        

\(\frac{1}{a}:\frac{1}{b}=\frac{1}{a}\cdot\frac{b}{1}=\frac{b}{a}=\frac{2}{134}\)

bn tự làm tiếp nha

hk tôt 

2 tháng 5 2019

\(\frac{1}{a}:\frac{1}{b}=\frac{1}{a}\cdot\frac{b}{1}=\frac{b}{a}\)

Mà \(\frac{1}{a}:\frac{1}{b}=\frac{2}{134}\)

\(\Rightarrow\frac{b}{a}=\frac{2}{134}\)

\(\Rightarrow\frac{b}{2}=\frac{a}{134}=\frac{b-a}{2-134}=-\frac{2}{\frac{143}{132}}\)

Đến đây làm nốt nhé !

P/S:Cái này lp 7 thì phải

Câu 1:a) tính giá trị các biểu thức sau:A=2[(62 - 24) : 4] + 2014B = \(\left(1+2\frac{1}{3}-3\frac{1}{4}\right)\div\left(1+3\frac{7}{12}-4\frac{1}{2}\right)\)b) tìm x biết \(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)Câu 2:a) tìm \(x\in Z\)biết \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)b)tìm các chữ số x,y sao cho 2014xy \(⋮\)42c) tìm các số nguyên a, b biết\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+1}\)Câu 3: a) tìm số tự nhiên n để...
Đọc tiếp

Câu 1:

a) tính giá trị các biểu thức sau:

A=2[(6- 24) : 4] + 2014

B = \(\left(1+2\frac{1}{3}-3\frac{1}{4}\right)\div\left(1+3\frac{7}{12}-4\frac{1}{2}\right)\)

b) tìm x biết \(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)

Câu 2:

a) tìm \(x\in Z\)biết \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

b)tìm các chữ số x,y sao cho 2014xy \(⋮\)42

c) tìm các số nguyên a, b biết\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+1}\)

Câu 3: 

a) tìm số tự nhiên n để (n+3)(n+1) là số nguyên tố

b) cho n = 7a5 + 8b4. Biết a - b = 6 và n chia hết cho 9. Tìm a; b

c)tìm phân số tối giản \(\frac{a}{b}\)lớn nhất (a,b\(\in\)N*) sao cho khi chia mỗi phân số 4/75 và 6/165 cho a/b đc kết quả là số tự nhiên

câu 4:

1. trên tia Ox lấy 2 điểm M và N sao cho OM= 3cm, ON= 7cm

a)tính MN

b) lấy điểm P thuộc tia Ox, sao cho MO = 2cm. tính OP

c)trong trường hợp M nằm giữa O và P, CMR P là trung điểm MN

2. cho 2014 điểm trong đó ko có 3 điểm nào thảng hàng. có bao nhiêu tam giác mà các đỉnh là 3 trong 2014 đỉnh đó

Câu 5:

a) cho \(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2014}{4^{2014}}.CMR:S< \frac{1}{2}\)

b) tìm số tự nhiên n sao cho n + S(n) = 2014. trong đó S(n) là tổng các chữ số của n

0
17 tháng 4 2018

Sai đề r nhé

+)Ta có\(\frac{1}{a}=\frac{1}{b}=\frac{2}{143}\)(1)

+)Ta lại có:b-a=2

=>b=a+2(2)

Thay (2) vào (1) được:

\(\frac{1}{a}=\frac{1}{a+2}=\frac{2}{143}\)

=>\(\frac{1.\left(a+2\right)}{a.1}=\frac{2}{143}\)

=>\(\frac{a+2}{a}=\frac{2}{143}\)

Mà a+2>a

=>\(\frac{a+2}{a}=\frac{2}{143}\)(vô lí)

=>Không tìm được a và b

Chúc bn học tốt

Hoặc bạn xem lại đề nha

30 tháng 3 2020

ai biết làm câu nào thì làm giúp mik nha

30 tháng 3 2020

a) Mình nghĩ nên sửa lại đề 1 chút: a-b=3

b) Có 4n-9=2(2n+1)-13

Vì 2n+1 chia hết cho 2n+1 => 2(2n+1) chia hết cho 2n+1

Vậy để 2(2n+1)-13 chia hết cho 2n+1

=> 13 chia hết cho 2n+1

n nguyên => 2n+1 nguyên => 2n+1\(\inƯ\left(13\right)=\left\{-13;-1;1;3\right\}\)

Ta có bảng

2n+1-13-113
2n-14-202
n-7-101

d)Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^n}\)

Ta có: \(\hept{\begin{cases}\frac{1}{2^2}< \frac{1}{1\cdot2}\\......\\\frac{1}{2^n}< \frac{1}{2^{n-1}\cdot2^n}\end{cases}}\)

\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2^{n-1}\cdot2^n}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2^{n-1}}-\frac{1}{2^n}\)

\(\Rightarrow A< 1-\frac{1}{2^n}\)(đpcm)