Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(d=(0,1,4,5,6,9)
a=(1,4,9)
ad =(16,49,)
cd =(16,49)
1b16
,4b49
không co b thỏa mãn
câu này trong phần nâng cao và phát triển. Ai muốn xem kết quả thì mở quyển toán nâng cao và phát triển 6 ra
b x b = d nên d chỉ có thể là 4; 6 hoặc 9, khi đó b sẽ là 2; 4; 3 hoặc 7
Vì hai thừa số là số có hai chữ số và tích có ba chữ số bằng nhau, nên chữ số hàng chục sẽ bé hơn hàng đơn vị. Vì vậy ta chọn b = 7
Nếu b = 7 và d = 9 ta có:
a7 x c7 = 999
Thế vào phép tính suy ra ta có:
a = 2 và c = 3
27 x 37 = 999
Vậy abcd = 2739
(abcd) = 1000a + 100b + 10c + d
(abc) = 100a + 10b + c
(ab) = 10a + b
=> (abcd) + (abc) + (ab) + (a) = 1111a + 111b + 11c + d
Theo đề bài, ta có 1111a + 111b + 11c + d = 4321 (*) (a,b,c,d là stn nhỏ hơn 10 và a # 0)
+ Nếu a < 3 thì VT <= 2222 + (111 + 11 + 1).9 = 3329 < VP
+ Nếu a > 3 thì VT >= 4444 > VP
Vậy a = 3 => 3333 + 111b + 11c + d = 4321 => 111b + 11c + d = 988 (**)
+ Nếu b < 8 thì VT <= 777 + (11 + 1).9 = 885 < VP
+ Nếu b > 8 thì VT >= 999 > VP
Vậy b = 8 => 888 + 11c + d = 988 => 11c + d = 100
+ Nếu c < 9 thì VT <= 88 + 9 = 97 < VP
Vậy c = 9 => d = 1
Số cần tìm là 3891.
tích nha !!!
abcd.9 = 1192e
=> 1192e chia hết cho 9
Để 1192e chia hết cho 9
=> 1 + 1 + 9 + 2 + e chia hết cho 9
=> 13 + e chia hết cho 9
=> e = 5
=> abcd . 9 = 11925
=> abcd = 1325
Có abcd = 1000a + 100b + 10c + d
bcd= 100b + 10c + d
cd=10c+d
Theo đề: 1000a + 200b + 30c + 4d=4574
=> d có thể là 1 hoặc 6 (tận cùng bằng 4).
* Với d=1 thì c=9 => không có b thỏa.
* d=6 thì 4d=24 (nhớ 2) => c=5 để 3c+2 có tận cùng là 7, khi đó, nhớ 1. Vậy b là 2 thêm 1 là 5 => a là 4
vậy abcd là 4256
Gọi số 4 chữ số cần tìm là abcd đi. Với a,b,c,d là các ẩn số cho các chữ số của số cần tìm. (a,b,c,d thuộc N)
Đề cho số cần tìm nhân với 9 cũng ra số 4 chữ số ngược lại ban đầu vậy suy ra có phương trình:
9[abcd] = [dcba]
=> 9(1000a + 100b + 10c + d) = 1000d + 100c + 10b + a (1)
Nhận xét: Số sau khi nhân 9 cũng là số có 4 chữ số vậy tối đa nó là 9999 thôi.
=> [dcba] =< 9999
=> 9[abcd] =< 9999
=> [abcd] =< 1111
Từ đây suy ra được a =< 1
Nhận xét: vì [abcd] là số 4 chữ số nên a không thể là 0, vậy a=1. Như vậy dò ra là số [1bcd]. Số này nhân 9 ra số 4 chữ số thì chắc chắn có dạng [9xxx]. Vậy => [dcba] = [9xxx] => d = 9.
Lúc này thế a=1,d=9 vào phương trình (1):
(1)=> c = 89 b + 8 (2)
Nhận xét: do c,b là số tự nhiên nên 0 =< c =< 9. Từ (2) thấy nếu b >= 1 thì c không thỏa điều kiện. Vậy => b = 0. Thế vào (2)=> c = 8
Kết luận số cần tìm là: 1089.