Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm ơn giúp mình với mình cần gấp lắm, ai làm sớm nhất, hay nhất mình k cho
Mình sẽ làm cách này nhanh hơn cách kia nhé
\(x^2+147=y^2\)
<=>\(y^2-x^2=147\)
<=>\(\left(y-x\right)\left(y+x\right)=147\)
Vì x;y là các số tự nhiên => x+y là số tự nhiên
=>Để (y-x)(y+x)=147 thì y-x cũng phải là số tự nhiên
Vậy ta có bảng sau:
...
Bạn cũng kẻ bảng như bài trước mình làm nhưng bỏ hết các giá trị âm đi nha!
\(x^2+147=y^2=>y^2-x^2=147=>\left(y-x\right)\left(y+x\right)=147\left(1\right)\)
Vì x,y là các số tự nhiên nên từ (1) suy ra \(y-x< y+x\) và y-x,y+x là các ước tự nhiên của 147
Mà các ước tự nhiên của 147 là 1;3;7;21;49;147
Nên \(\hept{\begin{cases}y-x=1\\y+x=147\end{cases}< =>\hept{\begin{cases}y=74\\x=73\end{cases}}}\) hoặc \(\hept{\begin{cases}y-x=3\\y+x=49\end{cases}< =>\hept{\begin{cases}y=26\\x=23\end{cases}}}\) hoặc \(\hept{\begin{cases}y-x=7\\y+x=21\end{cases}< =>\hept{\begin{cases}y=14\\x=7\end{cases}}}\)
Vậy......................
Với x = 0, \(5^x=5^0=1\Rightarrow y^2+y+1=1\Rightarrow y=0\)
Với \(x\ne0\), ta thấy \(5^x\) có tận cùng là 5. Vậy nên y2 + y + 1 cũng có tận cùng là chữ số 5.
Hay y2 + y có tận cùng là chữ số 4.
y2 + y = y(y + 1) là tích của hai số liên tiếp nên không xảy ra trường hợp có chữ số tận cùng là 4.
Vậy x = 0; y = 0.
Nhận xét: 6x2 và 2014 là số chẵn nên 35y2 cũng chẵn → y2 chẵn → y chẵn
Mặt khác: Từ 6x2 + 35y2 = 2014 nên 35y2 ≤ 2014 → y2 ≤ 58
Vậy y có thể nhận các giá trị: 0; 1; 2; 3; 4; 5; 6; 7.
Do y chẵn nên y có thể nhận các giá trị: 0; 2; 4; 6
Thay lần lượt các giá trị có thể nhận của y đề không tìm được giá trị của x.
Kết luận: Không tìm được các số tự nhiên x; y thoả mãn: 6x2 + 35y2 = 2014
* Hình như đề bài thiếu, phải có x, y là các số tự nhiên nx bạn nhé
Vì x, y là các số tự nhiên nên \(x^2\), \(y^2\)là các số chính phương.
Ta có: 84 \(⋮\)3; \(3y^2⋮3\)nên \(x^2⋮3\Rightarrow x⋮3\)
Với x = 0 => \(3y^2=84\Rightarrow y^2=28\)(loại vì 28 không phải số chính phương)
Với x = 3 \(\Rightarrow3y^2=75\Rightarrow y^2=25\Rightarrow y=5\)(thỏa mãn điều kiên của y)
Với x = 6 => \(3y^2=48\Rightarrow y^2=16\Rightarrow y=4\)(thỏa mãn điều kiên của y)
Với x = 9 => \(3y^2=3\)=> y^2= 1 => y = 1 (thỏa mãn điều kiên của y)
Với \(x\ge12\)thì x^2 > 84-> ko thỏa mãn đề bài
=> \(\left(x,y\right)\in\left\{\left(3,5\right);\left(6,4\right);\left(9,1\right)\right\}\)
a) 5x+2 = 125
=> 5x+2 = 53
=> x + 2 = 3
=> x = 1
Vậy ...
b) 3x+2 + 3x = 810
=> 3x + 3x . 32 = 810
=> 3x . ( 1 + 32 ) = 810
=> 3x . 10 = 810
=> 3x = 81
=> 3x = 34
=> x = 4
Vậy ...
c) 2x+2 - 2x = 192
=> 2x . 22 - 2x . 1 = 192
=> 2x . ( 22 - 1 ) = 192
=> 2x . 3 = 192
=> 2x = 64
=> 2x = 26
=> x = 6
Vậy ...
a)
5x+2 = 125
5x+2 = 53
=> x + 2 = 3
x = 1.
Vậy x = 1.
b)
3x+2 + 3x = 810
3x . ( 32 + 1 ) = 810
3x . ( 9 + 1 ) = 810
3x . 10 = 810
3x = 81
3x = 34
=> x = 4.
Vậy x = 4.
c)
2x+2 - 2x = 192
2x . ( 22 - 1 ) = 192
2x . 3 = 192
2x = 64
2x = 26
=> x = 6.
Vậy x = 6.
d)
2x + 2y = 2x+y
2x + 2y - 2x+y = 0
( 2x - 2x+y ) + 2y = 0
2x . ( 1 - 2y ) + ( 2y - 1 ) = -1
( 1 - 2y ) . ( 2x - 1 ) = -1.
=> 1 - 2y và 2x - 1 là các ước nguyên của -1. ( vì x , y là các stn )
Các ước nguyên của -1 là : -1 ; 1.
Ta có bảng sau:
Bảng | Ở |
Phía | Dưới |
1 - 2y | 1 | -1 |
2x - 1 | -1 | 1 |
y | 0 | 1 |
x | 0 | 1 |
Thử lại , ta có : x = 1; y = 1 TM đề bài.
Vậy x = 1 ; y = 1.
Ta có:
x^2+3y^2=84:
84 và 3y^2 chia hết cho 3
=> x^2 chia hết cho 3=>x chia hết cho 3=>x E {0;3;6;9}
+)x=0=>3y^2=84=>y^2=28 (loại)
+)x=3=>3y^2=75=>y^2=25=>y=5 (t/m)
+)x=6=>3y^2=48=>y^2=16=>y=4(t/m)
+)x=9=>3y^2=3=>y^2=1=>y=1(t/m)
Vậy có 3 cặp (x,y) E {(3;5);(6;4);(9;1)}
\(x^2+3\cdot y^2=84\)
Ta có : \(3\cdot y^2\le84\)
\(\Rightarrow y^2\le28\)
Vì \(x;y\inℕ\)nên :
Khi \(y^2=25\Rightarrow\hept{\begin{cases}y=5\\x=3\end{cases}}\)
Khi \(y^2=16\Rightarrow\hept{\begin{cases}y=4\\x=6\end{cases}}\)
Khi \(y^2=9\Rightarrow\hept{\begin{cases}y=3\\x=\sqrt{57}\notinℕ\end{cases}}\)
Khi \(y^2=4\Rightarrow\hept{\begin{cases}y=2\\x=\sqrt{72}\notinℕ\end{cases}}\)
Khi \(y^2=1\Rightarrow\hept{\begin{cases}y=1\\x=9\end{cases}}\)
Vậy \(\left(x;y\right)\in\left\{\left(9;1\right);\left(6;4\right);\left(3;5\right)\right\}\)