Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để n+4/n có giá trị nguyên thì n+4\(⋮\)n
Vì n chia hết cho n nên 4 chia hết cho n
-->n thuộc Ư(4)={1;2;4}
Vậy n thuộc {1;2;4}
c) Để 6/n-1 có giá trị nguyên thì 6 chia hết cho n-1
-->n-1 thuộc Ư(6)={1;2;3;6}
+,n-1=1 \(\Rightarrow\)n=2
+,n-1=2 \(\Rightarrow\)n=3
+,n-1=3 \(\Rightarrow\)n=4
+,n-1=6 \(\Rightarrow\)n=7
Vậy n thuộc {2;3;4;7}
3n + 8 chia hết cho n + 2
3n + 6 + 2 chia hết cho n + 2
Mà 3n + 6 chia hết cho n + 2
Nên 2 chia hết cho n + 2
n + 2 thuộc Ư(2) = {-2 ; - 1; 1 ; 2}
Mà n là số tự nhiên nên n = 0
3n + 4 chia hết cho n
Mà 3 n chia hết cho n
Nên 4 chia hết cho n
=> n thuộc Ư(4) = {1;2;4}
n khác 1 => n thuộc {2;4}
Câu 1: Làm lại nha:))
Ta có: 3n + 8 chia hết cho n + 2
Mà: n + 2 chia hết cho n + 2
=> 3( n + 2 ) chia hết cho n + 2
=> 3n + 6 chia hết cho n + 2
Từ đó => ( 3n + 8 ) - ( 3n + 6 ) chia hết cho n + 2
=> 2 chia hết cho n + 2
=> n + 2 \(\in\) Ư( 2 )
=> n + 2 = 2
=> n = 0
A = \(\dfrac{n+2}{n-1}=\dfrac{n-1+3}{n-1}=1+\dfrac{3}{n-1}\)
Để A là số nguyên thì \(3⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(3\right)\)
\(\Leftrightarrow n-1\in\left\{1;3;-1;-3\right\}\)
\(\Leftrightarrow n\in\left\{2;4;0;-2\right\}\)
có: A=\(\dfrac{n+2}{n-1}\)=\(\dfrac{n-1+3}{n-1}\)=\(1+\dfrac{3}{n-1}\)
Để A nhận giá trị nguyên thì 3/n-1 có giá trị nguyên
=> n-1ϵƯ(3)
Ta có bảng sau:
n-1 | 1 | 3 | -1 | -3 |
n | 2 | 4 | 0 | -2 |
Vậy nϵ\(\left\{-2;0;2;4\right\}\)