Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.22 + 3.23 + 4.24 + ... + n.2n = 2n+11
Đặt vế trái là A ta có:
A = 2.22 + 3.23 + 4.24 + ... (n -1).2n-1+ n.2n
2A = 2.23 + 3.24 + 4.25 +....+ (n- 1).2n + n.2n+1
2A-A = [2.23+3.24 + 4.25 +...+(n-1).2n+n.2n+1] - [2.22 + 3.23+...+n.2n]
A = -2.22+ (2.33-3.23) + (3.24 - 4.24) +...+ [(n-1).2n - n.2n ] + n.2n+1
A = -2.22 - 23 - 24 -...- 2n + n.2n+1
Đặt B = -2.22 - 23 - 24 - ... - 2n
2B = -2.23 - 24 - 25 -...-2n+1
2B - B = (-2.23 - 24 - 25 -..-2n+1) - (-2.22-23-24-..-2n)
B = -24 -24 - 25 -..2n-2n+1 + 23 + 23 + 24+ 25+ 2n
B = (-24 + 23) + (- 2n+1 + 23) +(-24+24)+(-25+25)+(-2n+2n)
B = -16 + 8 - 2n+1 + 8
B = (-16 + 8 + 8 ) - 2n+1
B = - 2n+1
A = n.2n+1 - 2n+1
Theo bài ra ta có:
n.2n+1 - 2n+1 = 2n+11
n.2n+1 - 2n+1 - 2n+11 = 0
2n+1.(n - 1 - 210) = 0
Vì n là số tự nhiên nên 2n+1 > 0
Vậy 2n+1.(n - 1- 210) = 0 ⇔ n - 1 - 210 = 0 ⇒ n = 1 + 210 ⇒ n = 1025
Vậy n = 1025
A = 2.22 + 3.23 + 4.24 + ... + n.2n
2.A = 2.23 + 3.24 + 4.25 + ...+ n.2n+1
=> A - 2.A = 2.22 + (3.23 - 2.23) + (4.24 - 3.24) + ...+ (n - n + 1).2n - n.2n+1
=> -A = 2.22 + 23 + 24 + ..+ 2n - n.2n+ 1 = 22 + (22 + 23 + ....+ 2n+ 1) - (n+1).2n+1
=> A = - 22 - (22 + 23 + ....+ 2n+ 1) + (n+1).2n+1
Tính B = 22 + 23 + ....+ 2n+ 1 => 2.B = 23 + ....+ 2n+ 1 + 2n+2 => 2B - B = 2n+2 - 22 => B = 2n+2 - 22
Vậy A = -22 - 2n+2 + 22 + (n+1).2n+1 = (n+1).2n+1 - 2n+ 2 = 2n+1.(n + 1 - 2) = (n-1).2n+1 = 2(n-1).2n
Theo bài cho A = 2(n-1).2n = 2n+10 => 2(n - 1) = 210 => n - 1 = 29 = 512 => n = 513
Vậy.............
Đặt A = 2.22 + 3.23 +...+ n.2n
2A = 2.23 + 3.24 +...+ n.2n+1
2A - A = (2.23 - 3.23) + (3.24 - 4.24) +...+ [(n - 1).2n - n.2n ] + n.2n+1
A = -23 - 24 -...- 2n + n.2n+1 - 2.22
A = n.2n+1 - (23 + 24 +...+ 2n) - 23
Đặt B = 23 + 24 +...+ 2n
2B = 24 + 25 +...+ 2n+1
2B - B = (24 + 25 +...+ 2n+1) - (23 + 24 +...+ 2n)
B = 2n+1 - 23
=> A = n.2n+1 - B - 23
=> A = n.2n+1 - (2n+1 - 23) - 23
=> A = n.2n+1 - 2n+1 + 23 - 23
=> A = 2n+1.(n - 1)
Thay A vào ta được:
2n+1.(n - 1) = 2n+10
n - 1 = 2n+10 : 2n+1
n - 1 = 29
n - 1 = 512
n = 512 + 1
n = 513
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!