K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2020

 Đặt A = m+ n2 + 2.m.n +m + 3n + 2 ta có :

A > m2 +n2 + 2.m.n =( m+n )

và A<m2 +n2 + 4 +2.m.n + 4.m+ 4n = ( m+n+ 2 )

Vậy A nằm giữa hai số chính phương liên tiếp nên : 

A chính phương <=> A = ( m + n + 1 )2 

                            <=> A = m+ n+ 2.m.n + 2.m + 2.n + 1 <=> m = n + 1 

Vậy n \(\in\)N tùy ý và m = n+ 1 

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

13 tháng 3 2017

AI KẾT BN KO!

TIỆN THỂ TK MÌNH LUÔN NHA!

KONOSUBA!!!

AI TK MÌNH MÌNH TK LẠI 3 LẦN.

26 tháng 9 2017

kết bạn ko

DD
10 tháng 5 2021

Giả sử \(m\ge n\).

Ta có: \(2^{2m}+2^{2n}=4^m+4^n=4^n\left(4^{m-n}+1\right)\).

Đặt \(4^{m-n}+1=l^2\Leftrightarrow4^{m-n}=\left(l-1\right)\left(l+1\right)\)

Dễ thấy với các trường hợp của \(m-n\)thì không có \(l\)thỏa mãn. 

Vậy phương trình vô nghiệm. 

10 tháng 5 2021

Bạn giải chi tiết hợn được không?

11 tháng 9 2021
Tui chịu Nhé Bye Bye Các bạn
13 tháng 7 2018

1/ Câu hỏi của Lý Khánh Linh - Toán lớp 8 - Học toán với OnlineMath

2/

Đặt \(n^2+4n+2013=m^2\left(m\in N\right)\)

\(\Rightarrow\left(n^2+4n+4\right)+2009=m^2\)

\(\Rightarrow m^2-\left(n+2\right)^2=2009\)

\(\Rightarrow\left(m+n+2\right)\left(m-n-2\right)=2009\)

Vì \(m,n\in N\Rightarrow m+n+2;m-n-2\in N\Rightarrow m+n+2>m-n-2\)

\(\Rightarrow\hept{\begin{cases}m+n+2=2009\\m-n-2=1\end{cases}\Rightarrow\hept{\begin{cases}m+n=2007\\m-n=3\end{cases}}\Rightarrow\hept{\begin{cases}m=1005\\n=1002\end{cases}}}\)

Vậy n = 1002

13 tháng 7 2018

các bạn thay n2 ở câu 1 = n3 cho mk nhé

26 tháng 6 2016

\(A=n^2+n+6\)là số chính phương thì \(4A=4n^2+4n+24\)cũng là số chính phương. Giả sử 4A = p2 (p thuộc N)

\(\Rightarrow4n^2+4n+1+23=p^2\Rightarrow\left(2n+1\right)^2+23=p^2\Rightarrow p^2-\left(2n+1\right)^2=23\)

\(\Rightarrow\left(p+2n+1\right)\left(p-2n-1\right)=23\times1\)(2)

Với n ; p là số tự nhiên thì p+2n+1 là số lớn; p-2n-1 là số bé. Do đó:

(2) => \(\hept{\begin{cases}p+2n+1=23\\p-\left(2n+1\right)=1\end{cases}\Rightarrow2n+1=11\Rightarrow}n=5\)

Vậy với n = 5 thì A = n2 + n + 6 là số chính phương.