K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2016

Vì : 335 chia cho a thì dư 20

=> 335 - 20 \(⋮\)a ( a > 20 )

=> 315 \(⋮\)a (1)

Vì : 561 chia cho a thì dư 21

=> 561 - 21 \(⋮\)a ( a > 21 )

=> 540 \(⋮\)a (2)

Từ (1) và (2) => a \(\in\) ƯC(315,540) ( a > 21 )

Ta có :

315 = 32 . 5 . 7

540 = 22 . 33 . 5

ƯCLN(315,540) = 32 . 5 = 45

Ư(45) = { 1;3;5;9;15;45 }

ƯC(315,540) = { 1;3;5;9;15;45 }

Mà : a > 21

=> a = 45

Vậy a = 45

4 tháng 11 2016

thanks bn hehe

6 tháng 2 2022
438 nha em
6 tháng 2 2022
Sai hả? Lộn
20 tháng 2 2018

a) Gọi số cần tìm là a \(\left(a\ne1;a>1\right)\)

Theo đề bài ta có: a chia cho 2;3;4;5;6 (dư 1)

=> a - 1 chia hết cho 2;3;4;5;6

Mà a nhỏ nhất => \(a-1\in BCNN\left(2;3;4;5;6\right)=60\)

                        => a  = 60 + 1 = 61

(Xem lại đề, vì chỗ chia hết cho 7??)

b) Để \(\overline{71x1y}⋮45\Leftrightarrow\) \(\overline{71x1y}⋮9\) và \(5\) 

Để \(\overline{71x1y}⋮5\) <=> Có tận cùng là 0 và 5

                              <=> y = {0;5}

Để \(\overline{71x1y}⋮9\) <=> Tổng các chữ số phải chia hết cho 9

           Tức là: 9 + 1 + x + 1 + y phải chia hết cho 9

Nếu y = 0 \(\Rightarrow7+1+x+1+0\) phải chia hết cho 9

                 => x = {0;8}

Nếu y = 5 \(\Rightarrow7+1+x+1+5\) phải chia hết cho 9

                  => x = 4

Vậy x = {0;8;4} và y = {0;5}

20 tháng 2 2018

a) Gọi số cần tìm là a 
ta có a chia 2,3,4,5,6 đều dư 1 ⇒ a-1 chia hết cho 2,3,4,5,6
⇔a-1 là bội chung của 2,3,4,5,6
a-1= { 60;120;180;240;300;360;420;480;540;600;....}
Mặt khác ta có a chia hết cho 7 và phải là số nhỏ nhất
nếu a-1= 300 thì a=301 là số nhỏ nhât thoa mãn yêu cầu của bài toán

b)Để 71x1y chia hết cho 45 thì 71x1y phải chia hết cho 9 và 5
Để 71x1y chia hết cho 5 thì y bằng 0 hoặc 5
TH1:Nếu y bằng 0 thì:(7 + 1 + x + 1 + 0)chia hết cho 9
                                (         9 + x        ) chia hết cho 9
Vậy nếu y bằng 0 thì x bằng 0 hoặc 9
TH2:Nếu y bằng 5 thì:(7 + 1 + x + 1 + 5) chia hết cho 9
                               (         14 + x       ) chia hết cho 9
Vậy nếu y bằng 5 thì x bằng 4

6 tháng 10 2016

Gọi số tự nhiên nhỏ nhất cần tìm là a

Do a chia 29 dư 5; chia 31 dư 28

=> a = 29.m + 5 = 31.n + 28 \(\left(m;n\in N\right)\)

=> 29.m = 31.n + 23

=> 29.m = 29.n + 2.n + 23

=> 29.m - 29.n = 2.n + 23

=> 29.(m - n) = 2.n + 23

\(\Rightarrow2.n+23⋮29\)

Để a nhỏ nhất thì n nhỏ nhất => 2.n + 23 nhỏ nhất

Mà 2.n + 23 là số lẻ => 2.n + 23 = 29

=> 2.n = 29 - 23

=> 2.n = 6

=> n = 6 : 2 = 3

=> a = 31.3 + 28 = 121

Vậy số nhỏ nhất cần tìm là 121

 

6 tháng 10 2016

Gọi số tự nhiên cần tìm là A

Chia cho 29 dư 5 nghĩa là: A = 29p + 5 (p \(\in\) N)

Tương tự:  A = 31q + 28 (q \(\in\) N)

Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29(p - q) cũng là số lẻ => p - q \(\ge\) 1

Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)

                                         => 2q = 29(p - q) - 23 nhỏ nhất

                                         => p - q nhỏ nhất

Do đó p - q = 1 => 2q = 29 - 23 = 6

                         => q = 3

Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 93 + 28 = 121

1 tháng 11 2017
 

Vì 111 chia a dư 15; 180 chia a dư 20

nên 111 - 15 chia hết cho a; 180 - 20 chia hết cho a

=> 96 chia hết cho a; 160 chia hết cho a

=> a thuộc ƯC(96;160)

Mà ƯCLN(96;160) = 32

=> a thuộc Ư(32)

Mà a > 20 (vì số chia > số dư) => a = 32

 
1 tháng 11 2017

32 nha bạn.