Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301
x chia hết cho 5 suy ra x là BCNN(5)
5=5
=> B(5): { 0,5,10,15,20,25,30,35,40,45,50,55,...........,705,800...}
mà x thuộc N, 700<x<800
Vây x= 705
Ta có:
a-1 ∈ BC(2,3,4,5,6) → a-1 ∈ {60,120,180,240,300,360}
→ a ∈ {61,121,181,241,301,361}
Do a ⋮ 7 nên a = 301
Vậy, ta tìm được a = 301
a chia 4 dư 3 ; a chia 5 dư 4 ; a chia 6 dư 5 => a + 1 chia hết cho cả 3 ; 4 ; 5
<=> a + 1 \(\in\) BC(3 ; 4 ; 5)
Mà BCNN(3 ; 4 ; 5) = 60 => a + 1 = 60k (k \(\in\) N*)
Nhưng 200 \(\le\) a \(\le\) 400 nên a + 1 \(\in\) {240 ; 300 ; 360}
Vậy a \(\in\) {239 ; 299 ; 359}
Vì a chia 4,6 dư 1 nên a-1 chia hết cho 4,6
suy ra a-1 thuộc bc[4,6] ma bcnn[4,6]=12 nen bc[4,6]=b[12]={0;12;24;36;...}
suy ra a thuộc{1;13;25;37;...}
mà a chia hết cho 7 và a<400 nên a bằng...[bạn tự tính nhé]
Có số nào chia hết cho 7 đâu bạn