Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a) \(10\le\overline{a_7a_8}\le31\) để \(100\le\left(\overline{a_7a_8}\right)^2\le999\) là số có ba chữ số.
Với mỗi số trong khoảng \(\left\{10;11;12;...;31\right\}\) ta lại có một số \(\overline{a_1a_2a_3}\) khác nhau; còn a4; a5; a6 tùy ý.
b) Trước hết : \(23\le\overline{a_7a_8}\le46\)
Trước hết để a7a8 khi lập phương lên sẽ vẫn có chữ số tận cùng ban đầu thì \(a_8\in\left\{0;1;4;5;6;9\right\}\)
Giả sử a8 = 0 thì số a4a5a6a7a8 chia hết cho 103 = 1000; hay a7 phải bằng 0; loại.
Nếu a8 = 1 thì xét \(23\le\overline{a_7a_8}\le46\) có số 31 không thỏa mãn.
Tương tự xét các trường hợp còn lại khi đã có giới hạn \(23\le\overline{a_7a_8}\le46\).
Bài 1 :
Không đủ dữ kiện.
Ngộ nhỡ m = n = 2 thì điều phải chứng minh là sai.
Theo đề bài thì ta có:
\(\frac{ab}{|a-b|}=p\) (với p là số nguyên tố)
Xét \(a>b\)
\(\Rightarrow\frac{ab}{a-b}=p\)
\(\Leftrightarrow ab-pa+pb-p^2=-p^2\)
\(\Leftrightarrow\left(p+a\right)\left(p-b\right)=p^2\)
\(\Rightarrow\hept{\begin{cases}p+a=p\\p-b=p\end{cases}}\); \(\hept{\begin{cases}a+p=p^2\\p-b=1\end{cases}}\)
(Vì a, b, p là các số nguyên dương)
Tương tự cho trường hợp \(a< b\)
Làm nốt nhé
(x;y là số nguyên tố)
\(\left(x^2-y^2\right)=4xy+1\left(1\right)\)
Ta có \(\left(x^2-y^2\right)^2-1=4xy\Leftrightarrow\left(x^2-y^2+1\right)\left(x^2-y^2-1\right)=4xy\) (**)
Vì (1) là phương trình đối xứng và x,y là số nguyên nên đặt
\(2\le x< y\Rightarrow\hept{\begin{cases}x+y\ge6\\x+y\ge5\end{cases}}\)và y là số lẻ (I) ta có:
(**) <=> (đến đây có 5 TH tìm được (x;y)=(2;5))
Ta có :
\(\overline{a,b}.\overline{ab,a}=\overline{ab,ab}\)
\(\Leftrightarrow\)\(\left(\overline{a,b}.10\right)\left(\overline{ab,a}.10\right)=\overline{ab,ab}.100\)
\(\Leftrightarrow\)\(\overline{ab}.\overline{aba}=\overline{abab}\)
\(\Leftrightarrow\)\(\overline{ab}.\overline{aba}=\overline{ab}.\left(100+1\right)\)
\(\Leftrightarrow\)\(\overline{aba}=101\)
\(\Rightarrow\)\(a=1\)\(;\)\(b=0\)
Vậy \(a=1\) và \(b=0\)
Ta có \(A=\left(\overline{ab}\right)^2-\left(\overline{ba}\right)^2=\left(10a+b\right)^2-\left(10b+a\right)^2\)
\(A=\left(10a+b-10b-a\right)\left(10a+b+10b+a\right)=\left(9a-9b\right)\left(11a+11b\right)\)
\(A=9.11.\left(a-b\right)\left(a+b\right)\)
Do A là SCP và 9 là SCP \(\Rightarrow11\left(a-b\right)\left(a+b\right)\) là SCP
\(\Rightarrow\left(a-b\right)\left(a+b\right)=11k\) với k là SCP \(\Rightarrow\left(a-b\right)\left(a+b\right)\) là ước của 11
Lỡ tay bấm nút gửi, làm tiếp xuống vậy :D
Do \(\left\{{}\begin{matrix}0\le a-b\le9\\1\le a+b\le18\end{matrix}\right.\) và 11 là số nguyên tố
\(\Rightarrow a+b=11\) và \(a-b\) là SCP
Ta có các cặp số sau:
\(\left\{{}\begin{matrix}a+b=11\\a-b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=6\\b=5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a+b=11\\a-b=4\end{matrix}\right.\) \(\Rightarrow\) không có a, b tự nhiên thỏa mãn
\(\left\{{}\begin{matrix}a+b=11\\a-b=9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=10>9\\b=1\end{matrix}\right.\) (loại)
Vậy số cần tìm là 65