Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x\left(x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-7\end{matrix}\right.\)
Vậy: x∈{0;-7}
b) Ta có: \(\left(x+12\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+12=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-12\\x=3\end{matrix}\right.\)
Vậy: x∈{-12;3}
c) Ta có: \(\left(-x+5\right)\left(3-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x+5=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=-5\\x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)
Vậy: x∈{3;5}
d) Ta có: \(x\left(2+x\right)\left(7-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2+x=0\\7-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=7\end{matrix}\right.\)
Vậy: x∈{-2;0;7}
e) Ta có: \(\left(x-1\right)\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=3\end{matrix}\right.\)
Vậy: x∈{-2;1;3}
g) Ta có: \(\left(x-5\right)\left(x^2-81\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x^2-81=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x^2=81\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=9\\x=-9\end{matrix}\right.\)
Vậy: x∈{-9;5;9}
h) Ta có: \(x^3+27=0\)
\(\Leftrightarrow x^3=-27\)
hay x=-3
Vậy: x=-3
\(\left(x-3\right)\left(x-12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=12\end{cases}}\)
\(\Rightarrow x\in\left\{3;12\right\}\)
\(\left(x^2-81\right)\left(x^2+9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-81=0\\x^2+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x\in\varnothing\end{cases}}\Leftrightarrow x=9\)
\(\Rightarrow x=9\)
\(\left(x-4\right)\left(x+2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x-4\\x+2\end{cases}}\)trái dấu
\(TH1:\hept{\begin{cases}x-4>0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x< -2\end{cases}}\Leftrightarrow x\in\varnothing\)
\(TH2:\hept{\begin{cases}x-4< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 4\\x>-2\end{cases}}\Leftrightarrow x\in\left\{-1;0;1;2;3\right\}\)
Vậy \(x\in\left\{-1;0;1;2;3\right\}\)
a) với x<1 thì x-1<0& x-5<0=> (x-1)(x-5) >0 => loại
1<x<5 thì x-1>0 và x-5<0 => (x-1)(x-5) <0 nhận
với x> 5 thì x-1>0& x-5>0=> (x-1)(x-5) >0 => loại
KL nghiệm 1<x<5
b) x-3>0 => x>3
c) (x-1)(x+1)(x-3)(x+3)<0
lý luận như (a) {-3...-1...1...3}
KL Nghiệm: -3<x<-1 hoạc -1<x<3
bài 2:
x+2={-3.-1,1,3}=> x={-5,-3,-1,1}
y-1={1,3,-3,-1}=> y={2,4,-2,0}
KL nghiệm (x,y)=(-5,2);(-3,4);(-1,-2); (1,0)
2,
b, ( x -7 ) . ( y + 2) =0
suy ra x -7 =0 hoặc y + 2 =0
suy ra x =7 hoặc x =-2
chỗ ghi chữ hoặc bạn dùng dấu hoặc thay thế nhé
vì tren máy tính nen mình khonng biết ghi dấu hoặc
a) x (x + 3) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}}\)
Vậy.......
b) ( x - 2) ( 5 - x) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\5-x=0\end{cases}\orbr{\begin{cases}x=2\\x=5\end{cases}}}\)
Vậy......
c,c) (x - 1) ( x2 + 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}\orbr{\begin{cases}x=1\\x=\varnothing\end{cases}}}\)
Vậy.....
Bài làm
a) x( 2 + x )( 7 - x ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2+x=0\\7-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=7\end{matrix}\right.\)
Vậy x = 0 hoặc x = -2 hoặc x = 7
b) ( x - 1 )( x + 2 )( x - 3 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=3\end{matrix}\right.\)
Vậy x = 1 hoặc x = -2 hoặc x = 3
c) ( x - 5 )( x2 - 81 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x^2-81=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x^2=81\Leftrightarrow x=\pm9\end{matrix}\right.\)
Vậy x = 5 hoặc x = \(\pm\) 9 .
# Học tốt #
a) \(x\left(2+x\right)\left(7-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\2+x=0\\7-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=7\end{matrix}\right.\)
Vậy \(x\in\left\{0;-2;7\right\}\)
b) \(\left(x-1\right)\left(x+2\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{1;-2;3\right\}\)
c) \(\left(x-5\right)\left(x^2-81\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\x^2-81=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x^2=81\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=9\\x=-9\end{matrix}\right.\)
Vậy \(x\in\left\{5;9;-9\right\}\)