K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.

Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.

6 tháng 6 2016

Hai bài toán rất hay và lạ! Xin cảm ơn bạn Tuấn Minh.

Và mình không hiểu người post cái bài dài dài kia (bạn Thành - sau mà đổi tên là không biết tên gì nốt) nói gì luôn. @@@.

1./ Tìm các số nguyên dương x;y;z sao cho: \(\hept{\begin{cases}x+3=2^y\left(1\right)\\3x+1=4^z\left(2\right)\end{cases}}\)

  • Ta thấy y=0; 1 không phải là nghiệm của bài toán.
  • Với y =2 thì x=1; z=1 là 1 nghiệm của bài toán.
  • Với y>=3 thì:
  • Từ (2) suy ra: \(3x=4^z-1=\left(4-1\right)\left(4^{z-1}+4^{z-2}+...+4^2+4+1\right)\)

\(\Leftrightarrow x=4^{z-1}+4^{z-2}+...+4^2+4+1\)

  • Thay vào (1) ta có:  \(\left(1\right)\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+1+3=2^y\)

\(\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+4=2^y\)

\(\Leftrightarrow8\cdot2\cdot4^{z-3}+8\cdot2\cdot4^{z-4}+...+8\cdot2\cdot4+8\cdot2+8=2^y\)

\(\Leftrightarrow8\cdot\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=8\cdot2^{y-3}\)

\(\Leftrightarrow\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=2^{y-3}\)

Ta thấy vế trái lẻ nên đạt được dấu bằng chỉ khi y=3; khi đó x=5 và z=2.

  • Vậy bài toán có 2 bộ nghiệm nguyên là: \(\hept{\begin{cases}x=1;y=2;z=1\\x=5;y=3;z=2\end{cases}}\)
5 tháng 6 2016

câu 1:

y=z=vô nghiệm

16 tháng 1 2021

c, \(n-1⋮3n+2\Leftrightarrow3n-3⋮3n+2\)

\(\Leftrightarrow3n+2-5⋮3n+2\Leftrightarrow-5⋮3n+2\)

hay \(3n+2\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)

3n + 21-15-5
3n-1-33-7
n-1/3-11-7/3

Vì n thuộc N => n = { 1 ; -1 }

16 tháng 1 2021

b, hay : \(n-2\inƯ\left(-11\right)=\left\{\pm1;\pm11\right\}\)

n - 21-111-11
n3113-9
21 tháng 1 2017

?????????????????????????????

21 tháng 1 2017

Xin lỗi nha. Mk mún giúp lắm nhưng mk mới học lp 5 thui nên đọc đề ko hỉu gì hết đó.

22 tháng 1 2018

a) ta có: 3x+2 chia hết cho (x-1)

(x-1) chia hết cho (x-1)

=> 3(x-1) chia hết cho (x-1)

Hay (3x-3) chia hết cho (x-1)

=> [(3x+2)-(3x-3)] chia hết cho (x-1)

Hay 5 chia hết cho (x-1)

=> (x-1) thuộc Ư(5)={1;-1;5;-5}

Mà x thuộc Z

=> ta có bảng sau:

x-11-15-5
X206-4

Vậy x={2;0;6;-4}

Nhớ thay dấu bằng thành dấu thuộc nhé vì mình ko có dấu thuộc!!!

31 tháng 10 2018

Bọn súc vật OLM đâu hết rồi

29 tháng 1 2018

a/ \(3x+4⋮x-3\)

Mà \(x-3⋮x-3\)

\(\Leftrightarrow\hept{\begin{cases}3x+4⋮x-3\\3x-9⋮x-3\end{cases}}\)

\(\Leftrightarrow13⋮x-3\)

\(\Leftrightarrow x-3\inƯ\left(13\right)\)

Suy ra :

+) x - 3 = 1 => x = 4

+) x - 3 = 13 => x = 16

+) x  - 3 = -1  => x = 2

+) x - 3 = -13 => x = -10

Vậy ...

5 tháng 2 2016

bai nay kho qua

21 tháng 1 2019

a) \(-2011-\left(200-2011\right)\)

\(=-2011-200+2011\)

\(=\left(-2011+2011\right)-200\)

\(=0-200\)

\(=-200\)

b) \(\left(-2\right)^2-\left(-2000\right)^0+\left(-1\right)^{2018}-\left|-20\right|\)

\(=4-1+1-20\)

\(=4-20\)

\(=-16\)

21 tháng 1 2019

Bài 1 :

\(a)-2011-(200-2011)\)

\(=-2011-(200+2011)\)

\(=(-2011+2011)-200\)

\(=0-200=-200\)

\(b)(-2)^2-(-2000)^0+(-1)^{2018}-\left|-20\right|\)

\(=4-1+1-20\)

\(=4-20=-16\)

\(c)23\cdot18-23\cdot26+(-23)\cdot2\)

\(=23\cdot(18-26)+-(23\cdot2)\)

\(=23\cdot(-8)+(-46)\)

\(=-230\)

Bài 2 : Tìm số nguyên x biết :

\(a)3x-(-5)=20\)

\(\Rightarrow3x+5=20\)

\(\Rightarrow3x=20-5\)

\(\Rightarrow3x=15\Rightarrow x=5\)

\(b)3(x+2)=-4+(-2)^3\)

\(\Rightarrow3(x+2)=-4+(-8)\)

\(\Rightarrow3(x+2)=-12\)

\(\Rightarrow x+2=-12\div3\)

\(\Rightarrow x+2=-4\)

Tự tìm x câu b, và câu c,

Bài 3 tự làm