Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)n+7⋮n+2\)
\(\Rightarrow n+2+5⋮n+2\)
Mà n + 2 chia hết cho n + 2 => \(5⋮n+2\)=> n + 2 thuộc Ư\((5)\)\(=\left\{\pm1;\pm5\right\}\)
Lập bảng :
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
Vậy : ...
3)
3n+7\(⋮2n+1\)
vì \(3n+7⋮3n+7\)
=>\(2\left(3n+7\right)⋮3n+7\)
=> 6n+7\(⋮3n+7\)
vì \(2n+1⋮2n+1\)
\(\Rightarrow3\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+1⋮2n+1\)
\(\Rightarrow\left(6n+7\right)-\left(6n+1\right)⋮2n+1\)
\(\Rightarrow6⋮2n+1\)
đến đoạn này em chỉ cần lập bảng tìm n nữa là xong nhé
a/ \(\frac{n+2}{n-1}=\frac{n-1+3}{n-1}=1+\frac{3}{n-1}\)
Để n + 2 chia hết cho n - 1 thì 3 phải chia hết cho n - 1 hay n -1 phải là ước của 3
=> n - 1 = {-3; -1; 1; 3} => n = {-2; 0; 2; 4}
b/ \(\frac{2n+7}{n+1}=\frac{2n+2+5}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\)
Để 2n + 7 chia hết cho n + 1 thì 5 phải chia hết cho n +1 hay n +1 phải là ước của 5
=> n + 1 = {-5; -1; 1; 5} => n = {-6; -2; 0; 4}
Các câu còn lại làm tương tự
a) Ta có:
17 chia hết cho n-3
=>n-3 thuộc Ư(17)
=>Ư(17)={-1;1;-17;17}
Ta có bảng sau:
n-3 | -1 | 1 | -17 | 17 |
n | 2 | 4 | -14 | 20 |
KL | tm | tm | loại | tm |
Vậy....
n+7 chia hết cho n+2
n+2 chia hết cho n+2
suy ra (n+7)-(n+2)chia hết cho n+2
n+7-n-2 chia hết cho n+2
(n-n)+(7-2) chia hết cho n+2
5 chia hết cho n+2 suy ra n+2 thuộc Ư(5)={-1;1;5}
suy ra n+2 thuộc {-3;-1;3}
Vậy n+2 thuộc {-3;-1;3}
\(2n+7⋮n+1\)
\(\Rightarrow2\left(n+1\right)+5⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
a) Ta có : n+7 \(⋮\)n+2
\(\Rightarrow\)n+2+5\(⋮\)n+2
mà n+2\(⋮\)n+2
\(\Rightarrow\)5\(⋮\)n+2
\(\Rightarrow n+2\in_{ }\){-5;-1;1;5}
\(\Rightarrow n\in\){-7;-3;-1;2}
b,c,d tương tự
ai làm đúng mk k cho
a) \(n+7⋮n+2\)
=) \(\left[n+7-\left(n+2\right)\right]⋮n+2\)
=) \(n+7-n-2⋮n+2\)
=) \(5⋮n+2\)
=) \(n+2\inƯ\left(5\right)\)= \(\left\{+-1;+-5\right\}\)
=) \(n\in\left\{-3;-1;3;-7\right\}\)
đăng kí kênh V-I-S hộ mình nha !