K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
SL
1
ND
0
AH
Akai Haruma
Giáo viên
10 tháng 9 2023
Lời giải:
$25< 3^n< 250$
$\Rightarrow 9< 3^n< 729$
$\Rightarrow 3^2< 3^n< 3^6$
$\Rightarrow 2< n< 6$
Vì $n$ là stn nên $n\in\left\{3; 4;5\right\}$ (đều thỏa mãn)
3 tháng 7 2016
25 < 33 = 27 < 34 < 35 = 243 < 260
Vậy n \(\in\){ 3;4;5 }.
NT
2
22 tháng 9 2017
ta co \(3^3=27\) > 25
theo de bai, ta co 25 < \(3^n=3^n\) > \(3^2\left(1\right)\)
ta co \(3^5=\) 243 < 250 < \(3^6\)
theo de bai ra ta co \(3^n\) < 250 \(\Rightarrow3^n\) < \(3^6\left(2\right)\)
tu \(\left(1\right)va\left(2\right)\),suy ra 25 < \(3^3,3^4,3^5\)< 250
\(\Rightarrow n\in\left\{3,4,5\right\}\)
vay \(n\in\left\{3,4,5\right\}\)
22 tháng 9 2016
\(2^5< 3^n< 260\)
\(\Rightarrow2^5< 3^4\le3^n\le3^5< 260\)
\(\Leftrightarrow n\in\left\{4;5\right\}\)
Vậy...
25 < 3n < 250
Ta có:
33 <= 3n <= 35
=> 3 <= n <= 5
=> n = { 3;4;5}
Vậy n = 3;4;5
tk cho cj nha
////////