Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : ab - cd = 1
=> ab = 1 + cd
Giả sử n2 = abcd = 100ab + cd = 100. ( 1 + cd +cd ) = 101cd + 100
Điều kiện : 31< n < 100
=> 101cd = n2 -100 = ( n + 10 ).( n - 10 )
Vì n < 100
=> n - 10 < 90 và 101 là số nguyên tố nên n + 10 = 101
=> n = 101 - 10 = 91
Ta có : n = 91 nên n2 = 912 = 8281
Vậy số chính phương cần tìm có dạng abcd thỏa mãn yêu cầu đề bài là 8281
cho mk hỏi ngu tí tại sao 101 là số nguyên tố mà suy ra đc n + 10 = 101
Vì ab-cd=1 suy ra, a,b,c,d đều là số tự nhiên
Suy ra abcd là số tự nhiên
Vậy abcd là 1 số ._.
\(\left(abcd\right)\)là kí hiệu số có 4 chữ số \(abcd\)
Từ: \(\left(ab\right)-\left(cd\right)=1\Rightarrow\left(ab\right)=1+\left(cd\right)\)
Giả sử: \(n^2=\left(abcd\right)=100\left(ab\right)+\left(cd\right)=100\left[1+\left(cd\right)\right]+\left(cd\right)=101\left(cd\right)+100\)
\(Đk:31< n< 100\)
\(\Rightarrow101\left(cd\right)=n^2-100=\left(n+10\right)\left(n-10\right)\)
Vì \(n< 100\Rightarrow n-10< 90\)và 101 là số nguyên tố nên: \(n+10=101\Rightarrow n=91\)
Thử lại: số chính phương \(91^2=8281\)thỏa \(Đk:82-81=1\)
Với \(x=0\) thì \(\frac{y}{16}=\frac{-y}{18}=\frac{0}{17}\)\(\Rightarrow\)\(y=0\)
Với \(x\ne0\) ta có :
\(\frac{xy}{17}=\frac{x+y}{16}=\frac{x-y}{18}=\frac{x+y+x-y}{16+18}=\frac{2x}{34}=\frac{x}{17}\)
\(\Rightarrow\)\(\frac{xy}{17}=\frac{x}{17}\)\(\Leftrightarrow\)\(\frac{y}{17}=\frac{1}{17}\)\(\Leftrightarrow\)\(y=1\)
Mà \(\frac{x+y}{16}=\frac{xy}{17}\)\(\Leftrightarrow\)\(\frac{x+1}{16}=\frac{x}{17}\)\(\Leftrightarrow\)\(x=-17\) ( nhận )
Vậy \(\left(x;y\right)=\left\{\left(0;0\right);\left(-17;1\right)\right\}\)
x+y=-2
Áp dụng t/c dãy tỉ số = nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y}{3+4}=\frac{-2}{7}\)
Suy ra x=\(\frac{-6}{7}\)
y=\(\frac{-8}{7}\)
z= thay vào dãy tỉ số tính hok tốt