Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p=3 đó
Gỉa sử p khác 3 =>p không chia hết cho 3 do p là số nguyên tố
=>p chia 3 dư 1 hoặc 2
1) p chia 3 dư 1 =>p =3k+1 =>p^2 +44 =(3k+1)^2+44=9k^2 +6k+45 =3(... chia hết cho 3 ,do đó không là số nguyên tố
2) p chia 3 dư 2 ,cưng y như vậy p^2+44 chia hết cho3 ,do đó cũng ko là số nguyên tố
Vậy chỉ có p=3 thõa mãn thôi
Bạn ơi tick mk nha ,coi như ủng hộ vậy
a) Trường hợp 1: P=3
\(\Leftrightarrow P^2+44=3^2+44=53\) là số nguyên tố
Trường hợp 2: P>3
\(\Leftrightarrow\)P=3k+1 hoặc P=3k+2(\(k\in N\))
Với P=3k+1(\(k\in N\))
\(\Leftrightarrow P^2+44=\left(3k+1\right)^2+44=9k^2+6k+1+44\)
\(\Leftrightarrow P^2+44=3\left(3k^2+2k+15\right)⋮3\)(loại)
Với P=3k+2(\(k\in N\))
\(\Leftrightarrow P^2+44=\left(3k+2\right)^2+44=9k^2+12k+4+44\)
\(\Leftrightarrow P^2+44=3\left(3k^2+4k+16\right)⋮3\)(loại)
Vậy: P=3
b) Với P=3 thì P+10=13 và P+14=17 đều là số nguyên tố
Với P>3 thì \(P=3k+1\) hoặc P=3k+2(\(k\in N\))
Với P=3k+1(\(k\in N\)) thì P+14=3k+1+14=3(k+5) không là số nguyên tố
=> Loại
Với P=3k+2(\(k\in N\)) thì P+10=3k+2+10=3(k+4) không là số nguyên tố
=> Loại
Vậy: P=3
Bài 4:
Vì P là số nguyên tố lớn hơn 3 nên P là số lẻ
hay P-1 và P+1 là các số chẵn
\(\Leftrightarrow\left(P-1\right)\left(P+1\right)⋮8\)
Vì P là số nguyên tố lớn hơn 3 nên P=3k+1(k∈N) hoặc P=3k+2(k∈N)
Thay P=3k+1 vào (P-1)(P+1), ta được:
\(\left(3k-1+1\right)\left(3k+1+1\right)=3k\cdot\left(3k+2\right)⋮3\)(1)
Thay P=3k+2 vào (P-1)(P+1), ta được:
\(\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\left(3k+3\right)⋮3\)(2)
Từ (1) và (2) suy ra \(\left(P-1\right)\left(P+1\right)⋮3\)
mà \(\left(P-1\right)\left(P+1\right)⋮8\)
và (3;8)=1
nên \(\left(P-1\right)\left(P+1\right)⋮24\)(đpcm)
Số nguyên tố p cần tìm bằng 2. Thay vào ta có:
2.22-3=2.4-3=8=5 (1)
2.22+3=2.4+3=8+3=11 (2)
Mà 5 và 11 là hai số nguyên tố. (3)
Từ(1)(2)(3) => p=2
Câu trả lời hay nhất: Vì p là tích của 2 số là (n-2) và (n^2+n-1)
=> p là nguyên tố thì một trong 2 số trên phải bằng 1 (nếu cả hai tích số đều lớn hơn 1 => p là hợp số, trái với đầu bài)
Ta luôn có n^2+n-1 = n^2+1 +(n-2) > (n-2)
Vậy => n-2=1 => n=3 => p=11
k cho mk nha
+) Với x = 2 thì x2 + 45 = 22 + 45 = 4 + 45 = 49 = 72 => y = 7 ( đúng )
+) Với x > 2 thì x là số lẻ => x2 là số lẻ => x2 + 45 là số chẵn
=> y2 là số chẵn => y là số chẵn mà y là số nguyên tố => y= 2 ( vô lý )
vậy x = 2 , y = 7
p = 3 đó.
Giả sử p khác 3.Suy ra p không chia hết cho 3 do p là số nguyên tố.
Suy ra p chia 3 dư 1 hoặc 2.
1) p chia 3 dư 1=> p=3k+1=>p^2+44=(3k+1)^2+44=9k^2+6k+45=3(3k^2+22k+15) chia hết cho 3,do đó ko là số nguyên tố
2)p chia 3 dư 2, cũng y vậy p^2+44 chia hết cho 3,do đó cũng ko là số nguyên tố
Vậy chỉ có p=3 thỏa thôi