Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo đề bài, ta có:
\(\frac{a}{b}=\frac{a+4}{b+10}\) \(\left(1\right)\)
nên theo tính chất hai phân số bằng nhau, từ \(\left(1\right)\) ta suy ra:
\(a\left(b+10\right)=b\left(a+4\right)\)
\(\Leftrightarrow\) \(ab+10a=ab+4b\)
\(\Leftrightarrow\) \(10a=4b\)
Do đó, \(\frac{a}{b}=\frac{4}{10}=\frac{2}{5}\)
b) Vì \(\frac{a+b}{2b}=\frac{2a}{b}\) \(\left(gt\right)\) nên theo tính chất hai phân số bằng nhau, ta có:
\(\left(a+b\right)b=2a.2b\)
\(\Leftrightarrow\) \(ab+b^2=4ab\)
\(\Leftrightarrow\) \(b^2=3ab\) \(\left(2\right)\)
Mà \(b\ne0\) nên từ \(\left(2\right)\) suy ra \(b=3a\) , tức là \(\frac{a}{b}=\frac{1}{3}\)
Vậy, phân số tối giản \(\frac{a}{b}\) cần tìm là \(\frac{1}{3}\)
Bài 3:
a, A= n+3 / n-1
A = n-1+4 / n-1
A = 1 + 4/n-1
Để A là số nguyên thì 4/n-1 nguyên
=>4 chia hết n-1
=> n-1 thuộc Ư(4)={1;-1;2;-2;4;-4}
=> n thuộc {2;0;3;-1;4;-3}
b, B = 2n+3 / n-1
B = 2(n-1) + 5 / n-1
B= 2 + 5/n-1
Để B nguyên thì 5/n-1 nguyên
=> 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={1;-1;5;-5}
=> n thuộc {2;0;6;-4}
Bài 1 :
\(\frac{a+6}{b+14}=\frac{3}{7}\)
=> 7 ( a + 6 ) = 3 ( b + 14 )
=> 7a + 42 = 3b + 42
=> 7a = 3b
=> a/b = 3/7
Bài 2 :
a/b = 198/234 = 11/13
Số a là : 72 : ( 11 + 13 ) . 11 = 33
Số b là : 72 - 33 = 39
=> a/b = 33/39
Vạy,...........
=> 7 ﴾ a + 6 ﴿ = 3 ﴾ b + 14 ﴿
=> 7a + 42 = 3b + 42
=> 7a = 3b => a/b = 3/7
Bài 2 :
a/b = 198/234
= 11/13
Số a là :
72 : ﴾ 11 + 13 ﴿ . 11 = 33
Số b là :
72 ‐ 33 = 39
=> a/b = 33/39
Câu 1:
Tổng số phần bằng nhau: 5 + 7 = 12 ( phần )
Tử số: ( 4812 : 12 ) . 5 = 2005
Mẫu số: 4812 - 2005 = 2807
Vậy p/số đó là: \(\frac{2005}{2807}\)
\(3a,\frac{2n+15}{n+1}\) là số nguyên
\(\Leftrightarrow2n+15⋮n+1\)
\(\Leftrightarrow2n+2+13⋮n+1\)
\(\Leftrightarrow2\left(n+1\right)+13⋮n+1\)
\(\Leftrightarrow13⋮n+1\) ( vì \(2\left(n+1\right)⋮n+1\)và \(\left(n+1\right)\inℤ\) )
\(\Leftrightarrow n+1\inƯ\left(13\right)\left\{\pm1;\pm13\right\}\)
Đến đây bn lập bảng xét để tìm n.
Đáp án là D