Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có A=n2(n-1)+(n-1)=(n-1)(n2+1)
vì A nguyên tố nên A chỉ có 2 ước
TH1 n-1=1 và n2+1 nguyên tố => n=2 và n2+1=5 thỏa mãn
TH2 n2+1=1 và n-1 nguyên tố => n=0 và n-1 = -1 k thỏa mãn
vậy n=2
xin lỗi mình chỉ biết làm phần a thôi còn phần b,c bạn tự làm nhé
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
Đúng rồi đó, vừa nãy cô quên không kiểm tra điều kiện, cô chữa lại nhé :)
Ta phân tích A thành nhân tử \(A=\left(2n^2+2n+1\right)\left(n^2+2n+2\right)\)
Để A là số nguyên tố thì ta có \(\hept{\begin{cases}2n^2+2n+1=1\\n^2+2n+2>1\end{cases}}\) hoặc \(\hept{\begin{cases}n^2+2n+2=1\\2n^2+2n+1>1\end{cases}}\)
Từ đó suy ra n = 0. Khi đó A = 2.
\(A=n^4+n^2+1\)
\(=n^4+2n^2+1-n^2\)
\(=\left(n^2+1\right)^2-n^2\)
\(=\left(n^2-n+1\right)\left(n^2+n+1\right)\)
Điều kiện cần để A là số nguyên tố
\(\orbr{\begin{cases}n^2-n+1=1\\n^2+n+1=1\end{cases}}\)
Tìm được 2 giá trị của n là 0,1 (-1 không là số tự nhiên)
Vì chỉ là điều kiện cần nên ta phải thử lại
Thử lại:
\(n=0\Rightarrow A=1\)(không thỏa mãn)
\(n=1\Rightarrow A=3\)(thỏa mãn)
Vậy \(n=1\)
Chúc bạn học tốt.
1) n4 + 4 = (n4 + 4n2 + 4) - 4n2 = (n2 + 2)2 - (2n)2 = (n2 + 2 + 2n).(n2 + 2 - 2n)
Ta có n2 + 2n + 2 = (n+1)2 + 1 > 1 với n là số tự nhiên
n2 - 2n + 2 = (n -1)2 + 1 \(\ge\) 1 với n là số tự nhiên
Để n4 + 4 là số nguyên tố => thì n4 + 4 chỉ có 2 ước là chính nó và 1
=> n2 + 2n + 2 = n4 + 4 và n2 - 2n + 2 = (n -1)2 + 1 = 1
(n -1)2 + 1 = 1 => n - 1= 0 => n = 1
Vậy n = 1 thì n4 là số nguyên tố
Câu 1: xin sửa đề :D
CM: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)là 1 scp
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)
\(=\left(n^2+3n+1\right)^2\)là scp
a) Cần chứng minh : \(a^4-1\)chia hết cho 5 với mọi a là số tự nhiên.
Thật vậy : Với mọi số tự nhiên a không chia hết cho 5, sẽ có một trong các dạng : \(a=5k\pm1,a=5k\pm2\)(k thuộc N)
\(a^2\)có một trong hai dạng \(5k+1\)hoặc \(5k+4\)
\(a^4\)có một dạng duy nhất là \(5k+1\). Vậy \(a^4-1⋮5\)với mọi a là số tự nhiên.
Ta biểu diễn : \(A=\left(n^4-1\right)+5\) . Nhận thấy n4-1 chia hết cho 5 , 5 chia hết cho 5 => A chia hết cho 5. Mà A là số nguyên tố, vậy A = 5. Suy ra được n = 1
b) Với n = 1 , dễ thấy B = 5 là số nguyên tố
Với n = 2 , B = 32 không là số nguyên tố.
Với n = 3 , B = 145 không là số nguyên tố
Xét với n là số nguyên tố, n > 3, biểu diễn B dưới dạng : \(B=\left(n^4-1\right)+\left(4^n+1\right)\)
Dễ thấy n4-1 chia hết cho 5 , \(4^n+1=4^n+1^n=\left(4+1\right).M=5M⋮5\)
Suy ra B chia hết cho 5. Mà B là số nguyên tố, vậy B = 5. Vậy n = 1 thỏa mãn đề bài