K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2021

cứuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

13 tháng 5 2018

1) n=33

2) n=2

3) n=10

13 tháng 5 2018

1)n=33

2)n=2

3)n=10

26 tháng 7 2018

a) Ta có :  \(n+3⋮n+2\)

\(\Rightarrow\left(n+2\right)+1⋮n+2\)

Mà  \(n+2⋮n+2\)

\(\Rightarrow1⋮n+2\)

\(\Rightarrow n+2\inƯ_{\left(1\right)}=\left\{\pm1\right\}\)

Ta có bảng sau :

n+21-1
n-1-3

Mà  \(n\in N\)\(\Rightarrow\)ko có giá trị nào của n có thể thỏa mãn đk trên :)

26 tháng 7 2018

b)  \(2n+9⋮n-3\)

\(\Rightarrow2\left(n-3\right)+15⋮n-3\)

Mà  \(2\left(n-3\right)⋮n-3\)

\(\Rightarrow15⋮n-3\)

\(\Rightarrow n-3\inƯ_{\left(15\right)}=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)

Lại có :  \(n\in N\)

Ta có bảng sau :

n-31-13-35-515-15
n4 (tm)2 (tm)6 (tm) 0 (tm)8 (tm)-2 (loại)18 (tm)-12 ( loại )

Vậy  \(n\in\left\{4;2;6;0;8;18\right\}\)

18 tháng 12 2016

ta có 3n+10 chia hết cho n-1

=>3n-3+13 chia hết cho n-1

mà 3n-3 chia hết cho n-1

=>13 chia hết cho n-1

ta có bảng sau:

n-1113-1-13 
n2140

-12

 

=>n=(2;14;0;-12)

18 tháng 12 2016

ta có 3n+10 chia hết cho n-1

=>3n-3+13 chia hết cho n-1

mà 3n-3 chia hết cho n-1

=>13 chia hết cho n-1

ta có bảng sau:

n-1113-1-13 
n2140

-12

 

=>n=(2;14;0;-12)

26 tháng 10 2017

a) n = 3

b) n = 1

c) n = ........?

26 tháng 10 2017

Ghi cả lời giải ra chứ

10 tháng 3 2020

1) Ta có: \(n^2+n+17=n.\left(n+1\right)+17\)

- Để \(n^2+n+17⋮n+1\)\(\Rightarrow\)\(n.\left(n+1\right)+17⋮n+1\)mà \(n.\left(n+1\right)⋮n+1\)

\(\Rightarrow\)\(17⋮n+1\)\(\Rightarrow\)\(n+1\inƯ\left(17\right)\in\left\{\pm1;\pm17\right\}\)

- Ta có bảng giá trị:

\(n+1\)\(-1\)\(1\)\(-17\)\(17\)
\(n\)\(-2\)\(0\)\(-18\)\(16\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(n\in\left\{-18,-2,0,16\right\}\)

2) Ta có: \(9-n=\left(-n+3\right)+6=-\left(n-3\right)+6\)

- Để \(9-n⋮n-3\)\(\Rightarrow\)\(-\left(n-3\right)+6⋮n-3\)mà \(-\left(n-3\right)⋮n-3\)

\(\Rightarrow\)\(6⋮n-3\)\(\Rightarrow\)\(n-3\inƯ\left(6\right)\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

- Ta có bảng giá trị:

\(n-3\)\(-1\)\(1\)\(-2\)\(2\)\(-3\)\(3\)\(-6\)\(6\)
\(n\)\(2\)\(4\)\(1\)\(5\)\(0\)\(6\)\(-3\)\(9\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(n\in\left\{-3,0,1,2,4,5,6,9\right\}\)

10 tháng 3 2020

1) n2 + n + 17 = n(n+1) +17 chia hết cho n + 1

=>17 phải chia hết cho n + 1

=> n + 1 thuộc ước 17 ={1;-1;17;-17}

=> n thuộc {0;16;-2;-18}

Vậy có 4 giá trị n thỏa mãn đề bài

2)9-n = 6 -(n-3) chia hết cho n - 3

=> n - 3 thuộc ước 6 = {1;-1;2;-2;3;-3;6;-6}

=> n thuộc {4;2;5;1;6;0;9;-3}

Vậy có 6 giá trị n thỏa mãn đề bài

(n+5)/(n+1)=[(n+1) +4]/(n+1) 
=1 +4/(n+1) 
chia hết khi VP là số tự nhiên 
---> 4/(n+1) là số tự nhiên 
--> n+1 bằng 1,2,4 
---> n bằng 0, 1 , 3

và ngược lại  

24 tháng 1 2016

n-1 chia hêt cho n+5

=>n+5-6 chia hết cho n+5

=>6 chia hết cho n+5

=>n+5 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}

=>n thuộc{-6;-4;-7;-3;-11;1}

n + 5 chia hết cho n - 1

=>n-1+6 chia hết cho n-1

=>6 chia hết cho n-1

=>n-1 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}

=>n thuộc {0;2;-1;3;-2;4;-5;7}

28 tháng 12 2018

1) Có: \(2n+7=2(n+1)+5\)

Mà \(2\left(n+1\right)⋮n+1\)

\(\Rightarrow5⋮n+1\Rightarrow n+1\inƯ\left(5\right)\left\{1;5\right\}\)

\(\Rightarrow\orbr{\begin{cases}n+1=1\\n+1=5\end{cases}\Rightarrow\orbr{\begin{cases}n=0\\n=4\end{cases}}}\)

Vậy \(n\in\left\{0;4\right\}\) thoả mãn

2) Có: \(n+6=\left(n+2\right)+4\)

Mà \(n+2⋮n+2\Rightarrow4⋮n+2\Rightarrow n+2\inƯ\left\{4\right\}=\left\{1;2;4\right\}\)

\(\Rightarrow+n+2=4\Rightarrow n=2\)

       \(+n+2=2\Rightarrow n=0\)

       \(+n+2=1\Rightarrow n=-1\)

Vì \(n\inℕ\Rightarrow n\in\left\{2;0\right\}\)

_Thi tốt_

29 tháng 12 2018

có 2n+1 chia hết cho n+1

=> n+n+1 chia hết cho n+1

=>n+1+n+1-1 chia hết cho n+1

=>2.[n+1] chia hết cho n+1

mà 2.[n+1] chia hết cho n+1

=> -1 chia hết cho n+1

=>n+1 thuộc Ư[-1]

=>n+1 thuộc {1 và -1}

=>n thuộc {0 và -2}

Vậy n thuộc {0 va -2}
 

17 tháng 12 2017

a) (n+3) Chia hết cho (n-1)

Ta có : (n+3)=(n-1)+4

Vì (n-1) chia hết cho (n-1) 

Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)

=> n-1 thuộc Ư(4)={1;2;4}

n-1     1          2             4

n         2          3            5

Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)

b)(4n+3) chia hết cho (2n+1)

Ta có : (4n+3)=2n.2+1+2

Vì (2n+1) chia hết cho (2n+1)

Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)

=> 2n+1 thuộc Ư(3)={1;3}

2n+1                 1              3 

2n                    0               2

n                      0              1

Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)