Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2x^2-4xy+2y^2-8t^2\)
\(=2\left[\left(x^2-2xy+y^2\right)-4t^2\right]\)
\(=2\left[\left(x-y\right)^2-\left(2t^2\right)\right]-\)
\(=2\left(x-y+2t\right)\left(x-y-2t\right)\)
\(b,x^3+x+3x^2y+2xy^2+y^3+y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)+\left(x+y\right)\)
\(=\left(x+y\right)^3+\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2+1\right]\)
\(=\left(x+y\right)\left(x^2+2xy+y^2+1\right)\)
\(c,x^4-7x^2=x^2\left(x^2-7\right)\)
\(=x^2\left(x+\sqrt{7}\right)\left(x-\sqrt{7}\right)\)
Sửa đề:\(d,5x-5y-x^2+2xy-y^2\)
\(=5\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(5-x+y\right)\)
\(e,x^4+4x^3+4x^2-x^2y^2\)
\(=\left(x^4+4x^3+4x^2\right)-x^2y^2\)
\(=\left(x^2+2x\right)^2-\left(xy\right)^2\)
\(=\left(x^2+2x+xy\right)\left(x^2+2x-xy\right)\)
\(g,x^2-y^2-2y-1\)
\(=x^2-\left(y+1\right)^2\)
\(=\left(x+y+1\right)\left(x-y-1\right)\)
a) \(2x^2-4xy+2y^2-8t^2=2\left(x^2-2xy+y^2-4t^2\right)\)
\(=2\left(\left(x-y\right)^2-\left(2t\right)^2\right)=2\left(x-y-2t\right)\left(x-y+2t\right)\)
b) \(x^3+x+3x^2y+3xy^2+y^3+y=\left(x^3+3x^2y+3xy^2+y^3\right)+\left(x+y\right)\)
\(=\left(x+y\right)^3+\left(x+y\right)=\left(x+y\right)^2\left(x+y\right)+\left(x+y\right)\)
\(=\left(x^2+2xy+y^2\right)\left(x+y\right)+\left(x+y\right)=\left(x^2+2xy+y^2+1\right)\left(x+y\right)\)
c) \(x^4-7x^2=\left(x^2\right)^2-\left(\sqrt{7}x\right)^2=\left(x^2-\sqrt{7}x\right)\left(x^2+\sqrt{7}x\right)\)
d) câu này hình như đề sai thì phải
e) \(x^4+4x^3+4x^2-x^2y^2=x^2\left(x^2+4x+4-y^2\right)\)
\(=x^2\left(\left(x+2\right)^2-y^2\right)=x^2\left(x+2-y\right)\left(x+2+y\right)\)
g) \(x^2-y^2-2y-1=x^2-\left(y^2+2y+1\right)=x^2-\left(y+1\right)^2\)
\(=\left(x-y-1\right)\left(x+y+1\right)\)
a )x2+2y2-2xy+2x-4y+2=0
<=>x2-2x(y-1)+y2-2y+1+y2-2y+1=0
<=>x2-2x(y-1)+(y-1)2+(y-1)2=0
<=>(x-y+1)2+(y-1)2=0
<=>x-y+1=0 va y-1=0
<=>x=y-1 y=1
<=>x=1-1=0 y=1
b1:
câu a,f áp dụng a2-b2=(a-b)(a+b)
câu b,c áp dụng a3-b3=(a-b)(a2+ab+b2)
câu d: \(x^2+2xy+x+2y=x\left(x+2y\right)+\left(x+2y\right)=\left(x+1\right)\left(x+2y\right)\)
câu e: \(7x^2-7xy-5x+5y=7x\left(x-y\right)-5\left(x-y\right)=\left(7x-5\right)\left(x-y\right)\)
câu g xem lại đề
c.
\(4y^2+1=4y\)
\(\Leftrightarrow4y^2-4y+1=0\)
\(\Leftrightarrow4y^2-2y-2y+1=0\)
\(\Leftrightarrow2y\left(2y-1\right)-\left(2y-1\right)=0\)
\(\Leftrightarrow\left(2y-1\right)^2=0\)
\(\Leftrightarrow y=0\)
d.
\(y^2-2y=80\)
\(\Leftrightarrow y^2-2y-80=0\)
\(\Leftrightarrow y^2-10y+8y-80=0\)
\(\Leftrightarrow y\left(y-10\right)+8\left(y-10\right)=0\)
\(\Leftrightarrow\left(y+8\right)\left(y-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y+8=0\\y-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-8\\y=10\end{matrix}\right.\)
ta có : \(pt\Leftrightarrow\left(x-y+3-\sqrt{-y^2+2y+3}\right)\left(x-y+3+\sqrt{-y^2+2y+3}\right)=0\)
\(\Leftrightarrow\) cái đó
a,\(2x^2-8x+y^2+2y+9=0\)
\(\Rightarrow2\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\)
Mà \(2\left(x-2\right)^2\ge0\forall x\); \(\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra<=> \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)
Vậy x=2;y=-1