\(2y^2+x-2y+5=xy\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2y^2+x-2y+5=xy\)

\(\Leftrightarrow8y^2-4xy+4x-8y+20=0\)

\(\Leftrightarrow\left(4y^2-4xy+x^2\right)-\left(x^2-4x+4\right)+\left(4y^2-8y+4\right)=-20\)

\(\Leftrightarrow\left(2y-x\right)^2-\left(x-2\right)^2+\left(2y-2\right)^2=-20\)

bn tự giải tiếp

9 tháng 1 2020

Làm tiếp bài bạn ɱ√ρ︵ƤUɮĞツ『ღƤℓαէїŋʉɱ ₣їɾεツ』⁀ᶜᵘᵗᵉ

\(\left(2y-x\right)^2-\left(x-2\right)^2+\left(2y-2\right)^2=-20\)

\(\Leftrightarrow\left(2y-2x-2\right)\left(2y-2\right)+\left(2y-2\right)^2=-20\)

\(\Leftrightarrow\left(2y-2\right)\left(2y-2x-2+2y-2\right)=-20\)

\(\Leftrightarrow2\left(y-1\right)\left(4y-2x-4\right)=-20\)

\(\Leftrightarrow\left(y-1\right)\left(2y-x-2\right)=-5\)

Đến đây đơn giản rồi

7 tháng 10 2020

b) x2y + x + xy2 + y + 2xy = 9

xy(x + y + 2) + (x + y + 2) = 11

<=> (xy + 1)(x + y + 2) = 11

Xét các TH

+) \(\hept{\begin{cases}xy+1=1\\x+y+2=11\end{cases}}\) <=> \(\hept{\begin{cases}xy=0\\x+y=9\end{cases}}\) <=> x = 0 => y = 9 hoặc y = 0 => x = 9

+) \(\hept{\begin{cases}xy+1=-1\\x+y+2=-11\end{cases}}\)<=> \(\hept{\begin{cases}xy=-2\\x+y=-13\end{cases}}\) <=> \(\hept{\begin{cases}x=-13-y\\y\left(-13-y\right)=-2\end{cases}}\)

<=> \(\hept{\begin{cases}x=-13-y\\y^2+13y-2=0\end{cases}}\)(loại)

+) \(\hept{\begin{cases}xy+1=11\\x+y+2=1\end{cases}}\) <=> \(\hept{\begin{cases}xy=10\\x+y=-1\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-1-y\right)=10\\x=-1-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+y+10=0\\x=-1-y\end{cases}}\)(loại)

+) \(\hept{\begin{cases}xy+1=-11\\x+y+2=-1\end{cases}}\) <=> \(\hept{\begin{cases}xy=-12\\x+y=-3\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-3-y\right)=-12\\x=-3-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+3y-12=0\\x=-3-y\end{cases}}\) (loại)

19 tháng 3 2020

ta có \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)

zì 5 , 7 là 2 số nguyên tố cùng nhau . Nên

\(\hept{\begin{cases}x+2y=5m\\x^2+xy+y^2=7m\end{cases}m\inℤ}\)

từ \(x+2y=5m=>5m-2y=x.\)thay zô \(x^2+xy+y^2=7m\)zà rút gọn ta được

\(\left(5m-2y\right)^2+\left(5m-2y\right)y+y^2=7m\Leftrightarrow3y^2-15my+25m^2-7m=0\left(1\right)\)

=>\(3\left(y^2-5my\right)+25m^2-7m=0=>3\left(y-\frac{5m}{2}\right)^2-\frac{75m^2}{4}=7m-25m^2\)

=>\(3\left(y-\frac{5m}{2}\right)^2=\frac{1}{4}\left(-25m^2+28m\right)\)

zì \(3\left(y-\frac{5m}{2}\right)^2\ge0\forall m,y\)

=>\(\frac{1}{4}\left(-25m^2+28m\right)\ge0\Leftrightarrow25m^2-28m\le0\Leftrightarrow m\left(m-\frac{28}{25}\right)\le0\Leftrightarrow0\le m\le\frac{28}{25}\)

mà \(m\inℤ\)nên \(m\in\left\{0,1\right\}\)

zới m=0 thay zô (1) ta được y=0. từ đó tính đc x=0

zới m =1 thây zô (1) ta được \(3y^2-15y+18=0=>y^2-5y+6=0=>\orbr{\begin{cases}y=2\\y=3\end{cases}}\)

zới y=2 , m=1 thì ta tính đc x=1

zới y=3 , m=1 thì ta tính đc x=-1

zậy \(\left(x,y\right)\in\left\{\left(0,0\right);\left(1,2\right)\left(-1,3\right)\right\}\)

2 tháng 7 2017

Áp dụng bất đẳng thức x^2+y^2 ≥ 2xy  nên ta có x^2+y^2+xy ≥ 3xy
Mà x^2+y^2+xy=x^2y^2 ≥ 0 nên suy ra x^2y^2+3xy ≤ 0 ⟺−3 ≤ xy ≤ 0
Vì x,y nguyên nên xy nguyên, vậy nên xy∈{−3,−2,−1,0}
Trường hợp xy=−3 ta tìm được các nghiệm (−1,3),(3,−1),(−3,1),(1,−3)
Trường hợp xy=−2 ta tìm được các nghiệm (−1,2),(2,−1),(1,−2),(−2,1)
Trường hợp xy=−1 ta tìm được các nghiệm (−1,1),(1,−1)
Trường hợp xy=0 ta tìm được nghiệm (0,0)
Thử lại thì thấy chỉ có các nghiệm (0,0),(1,−1),(−1,1) thỏa mãn và đó là các nghiệm nguyên cần tìm 

20 tháng 3 2017

bạn hỏi Gemini đi anh ý biết đấy

20 tháng 3 2017

k minh di mink giai cho de lam

10 tháng 8 2020

pt <=> \(x^2\left(y^2-1\right)+x\left(-y\right)-2y^2=0\)

Xét: \(\Delta=y^2-4\left(y^2-1\right).-2y^2=y^2+8y^2\left(y^2-1\right)\)

\(\Delta=8y^4-7y^2\)

Do để pt có nghiệm => \(\Delta\)là 1 SCP

=> \(8y^4-7y^2\)là 1 SCP

=> \(8z^2-7z\)là 1 SCP vs \(z=y^2\)

Đến đây dễ dàng tìm ra z => Ra y => Ra x

24 tháng 8 2017

>>>>x^2-(2y^2+1-y)x+2y^2-y-1=0

>>>>delta=(2y^2+1-y)^2-4(2y^2-y-1) (tự tính nha bn)

có kq>>>để pt có no nguyên>>>>delta là sôc chính phương>>>xong

\(PT\Leftrightarrow5x^2+x\left(5y-7\right)+5y^2-14y=0\)

\(\Delta=\left(5y-7\right)^2-4.5.\left(5y^2-14y\right)\)

   \(=196-3\left(5y-7\right)^2\)

Để phương trình có nghiệm thì \(\Delta\ge0\Rightarrow\left(5y-7\right)^2\le65\)

Mặt khác \(5y-7\equiv3\left(mod5\right)\)

\(\Rightarrow\left(5y-7\right)^2\equiv4\left(mod5\right)\)

do đó \(\left(5y-7\right)^2\in\left\{4,9,14,19,24,29,34,39,44,49,54,59,64\right\}\)

mà (5y-7)2 là số chính phưng nên \(\left(5y-7\right)^2\in\left\{4,9,64\right\}\)

Từ đó tính ra

\(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)

\(\Leftrightarrow5x^2+5xy+5y^2-7x-14y=0\)

\(\Leftrightarrow5x^2+x\left(5y-7\right)+5y^2-14y=0\)

\(\Rightarrow\Delta_x=\left(5y-7\right)^2-4\cdot5\cdot\left(5y^2-14y\right)\)

\(=-75y^2+210y+49\)

\(=196-3\left(25y^2-2\cdot5y\cdot7+79\right)\ge0\)

\(=196-3\left(5y-7\right)^2\ge0\)

Để phương trình có nghiệm nguyên thì \(\Delta_x\ge0\Leftrightarrow\left(5y-7\right)^2\le65\)

Nhận thấy \(5y-7\equiv3\left(mod5\right)\Rightarrow\left(5y-7\right)^2\equiv4\left(mod5\right)\)

Do đó \(\left(5y-7\right)^2\in\left\{4;9;14;19;24;29;34;39;44;49;54;59\right\}\)

Mà \(\left(5y-7\right)^2\)chinh phương nên \(\left(5y-7\right)^2\in\left\{4;9;49\right\}\)

Đến đây ta xét trường hợp là ra.