K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1, yx2+yx+y=1

=> y(x2+x+1)=1

=>\(y=\frac{1}{x^2+x+1}\)

Vì y là số nguyên dương => 1\(⋮\)x2+x+1

=> x2+x+1=1(vì x>0)

=> vô nghiệm

Vậy không có nghiệm nguyên dương t/m pt

28 tháng 3 2018

\(yx^2+yx+y=1\)

\(\Leftrightarrow y\left(x^2+x+1\right)=1\)

Vì x,y nguyên dương => y,x2+x+1 nguyên dương

=>y,x2+x+1\(\in\) ước dương của 1 là1

=>\(\left\{{}\begin{matrix}y=1\\x^2+x+1=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=1\left(tm\right)\\x=0\left(ktm\right)\end{matrix}\right.\)

Vậy không có cặp gt thỏa mãn

18 tháng 4 2018

Trả lời

Giải phương trình nghiệm nguyên dương
y(y+1)2+x(x+1)2=8xyy(y+1)2+x(x+1)2=8xy


Do x,y>0x,y>0 nên ta có
(y+1)2x+(x+1)2y=8(y+1)2x+(x+1)2y=8
Mặt khác ta có
(y+1)2x+(x+1)2y2(x+1)(y+1)xy2.2x.2yxy=8(y+1)2x+(x+1)2y≥2(x+1)(y+1)xy≥2.2x.2yxy=8
Vậy PT đã cho có nghiệm duy nhất x=y=1x=y=1

18 tháng 4 2018

Dấu = của bđt thức, x=y=1

7 tháng 11 2019

\(y=\frac{x^3-x^2+2x+7}{x^2+1}=x-1+\frac{x+8}{x^2+1}\)

Đặt 

\(A=\frac{x+8}{x^2+1}\)

\(\Leftrightarrow\left(x-8\right)A=\frac{x^2-64}{x^2+1}=1-\frac{65}{x^2+1}\)

Để A nguyên thì \(x^2+1\)phải là ước của 65. Làm nốt

16 tháng 3 2017

X=3

Y=5

17 tháng 3 2017

x2+x+13=y2<=>4(x2+x+13)=4y2<=>4x2+4x+52=4y2<=>(4x2+4x+1)+51=4y2

<=>(2x+1)2+51=(2y)2<=>(2y)2-(2x+1)2=51<=>(2y-2x-1)(2y+2x+1)=51

đến đây giải kiểu pt ước số