Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:\) \(x,y,z\in Z^+\)
Không mất tính tổng quát, ta giả sử \(1\le x\le y\le z\) nên từ pt đã cho suy ra
\(20\ge3x^2+x^3\ge3+x^3\)
\(\Rightarrow\) \(x^3\le17\) hay nói cách khác \(x\le2\) nên kết hợp với điều kiện ở trên suy ra \(x\in\left\{1;2\right\}\)
Ta xét các trường hợp sau đây:
\(\Omega_1:\)
Bạn xét các trường hợp và đưa ra nghiệm chính xác là \(\left(x,y,z\right)=\left(2,2,2\right)\)
Ở câu b, bậc của y là bậc nhất nên có thể rút y theo x
\(y=\frac{112-2x^2+x}{2x+1}=\frac{-x\left(2x+1\right)+2x+1+111}{2x+1}=-x+1+\frac{111}{2x+1}\)
\(\Rightarrow2x+1\in\text{Ư}\left(111\right)=\left\{111;37;3;1;-111;-37;-3;-1\right\}\)
\(\Rightarrow x\in\left\{...\right\}\)