Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2-4xy+5y^2-16=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+y^2=16\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=16\)
Vì \(x;y\in Z\Rightarrow\left(x-2y\right)^2\in Z;y^2\in Z\)
Và \(\left(x-2y\right)^2\ge0,y^2\ge0\)
\(\left(x;y\right)=\left(8;4\right),\left(-8;-4\right),\left(4;0\right),\left(-4;0\right)\)
Ta có các tập nghiệm: \(\left(x;y\right)=\left(8;4\right),\left(-8;-4\right),\left(4;0\right),\left(-4;0\right)\) thì thỏa mãn phương trình
PT \(\Leftrightarrow x^2+\left(-4y\right).x+\left(5y^2-16\right)=0\)
Để PT trên có nghiệm \(\Leftrightarrow\Delta=\left(-4y\right)^2-4\left(5y^2-16\right)\ge0\)
\(\Leftrightarrow16y^2-20y^2+64\ge0\Leftrightarrow-4y^2+64\ge0\Leftrightarrow-4y^2\ge-64\)
\(\Leftrightarrow y^2\le16\Rightarrow-4\le y\le4\)
Đến đây xét các giá trị của y là tìm ra x
Ta có : \(x^2-4xy+5y^2-16=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-16\right)=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y-4\right)^2=0\)
Mà \(\left(x-2y\right)^2\ge0\forall x:y\)
\(\left(y-4\right)^2\ge0\forall y\)
Dấu " = " xảy ra khi :
\(\orbr{\begin{cases}x-2y=0\\y-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2y\\y=4\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x=8\\y=4\end{cases}}\)
Vậy \(\left(x;y\right)=\left(8;4\right)\)
1,\(4x+5y=10\)
\(\Rightarrow x=\frac{10-5y}{4}\)
\(\Rightarrow x=\frac{8+2-4y-y}{4}\)
\(\Rightarrow x=2-y+\frac{2-y}{4}\)
Để x nguyên => 2-y=4k(k thuộc N*)
=> y = 2-4k
=> x = 2-2+4k+4k : 4
=> x = 4k+k
Vậy \(\left(x;y\right)\in\left(4k+k;2-4k\right).Với\forall k\inℕ^∗\)
- Nếu y là số chẵn thì 5y2 có chữ số tận cùng là 0
Dẫn đến x2 có chữ số tận cùng là 7 (loại vì ko số chính phương nào tận cùng là 7)
- Nếu y là số lẻ thì 5y2 có chữ số tận cùng là 5
Dẫn đến x2 có chữ số tận cùng là 2 (loại)
Vậy \(x,y\in\varnothing\)
Theo mình đề đúng là :
\(x^2-4xy+5y^2=17\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=17\)
= 1+16
= 16+1
Ta có bảng sau:
Vậy \(\left(x;y\right)=\left\{\left(9;4\right);\left(-7;-4\right);\left(7;4\right);\left(-9;-4\right);\left(6;1\right);\left(2;-1\right);\left(-2;1\right);\left(-6;-1\right)\right\}\)
mình thấy theo cách này làm như đề trên cũng dc mà :<<