K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

123456789-44444444444444444444444444445

11 tháng 11 2021

a) 5x−13y=7⇔y=5x−713=5x+5−13135x−13y=7⇔y=5x−713=5x+5−1313
=5(x+1)13−1=5(x+1)13−1(1)
đật x+1=13t⇔x=13t−1(t−thuoc−Z)x+1=13t⇔x=13t−1(t−thuoc−Z)
thay vào (1) ta có y=5t−1(t−thuoc−Z)y=5t−1(t−thuoc−Z)
b) 6x−5y=−38⇔x=5y−386=5y+10−4866x−5y=−38⇔x=5y−386=5y+10−486
=5(y+2)6−8=5(y+2)6−8(1)
đặt y+2=6t⇔y=6t−2(t−thuoc−Zy+2=6t⇔y=6t−2(t−thuoc−Z(2)
vì y>0⇒t>13y>0⇒t>13(3)
thay (2) vào (1) ta có;
x=5t−8x=5t−8vì x<0⇒t<85(t−thuoc−Z)x<0⇒t<85(t−thuoc−Z)(4)
từ (3),(4) 13<t<8513<t<85
mà t thuôc Z nên t=1
với t= 1 thì x=-3,y=4

8 tháng 12 2018

Giả sử x;y là các số nguyên thỏa mãn phương trình 2x + 13y = 156

2x + 13y = 156 ⇒ 2x = 156 - 13y

Ta nhận thấy 13y và 156 đều chia hết cho 13.

Do đó 2x ⋮ 13

Đặt x = 13t (t ∈ Z) thay vào phương trình ta được:

2.13t + 13y = 156 ⇔ 26t + 13y = 156 ⇔ 2t + y = 12 ⇔ y = - 2t + 12

Vậy nghiệm nguyên của phương trình là (x = 13t; y = - 2t + 12) (với t ∈ Z)
20 tháng 3 2021

a) Ta có

2x+13y=1562x+13y=156

\(\Leftrightarrow\)13y=156−2x\(\Leftrightarrow\)13y=156−2x

\(\Leftrightarrow\)y=156−2x13<−>y=156−2x13

Để yy nguyên thì 156−2x156−2x phải chia hết cho 13.

Lại có 156−2x=2(78−x)156−2x=2(78−x). Do đó là số chẵn.

Vậy 156−2x∈B(13)={26,52,78,104,130,156}156−2x∈B(13)={26,52,78,104,130,156}

Do đó x∈{65,52,39,26,13,0}

7 tháng 2 2018

Ta có −5x + 2y = 7 ⇔ 2y = 7 + 5x ⇔ y = 5 x + 7 2 ⇔ y = 2 x + x + 7 2

Đặt x + 7 2 = t ⇒ x = 2t − 7y = 2.(2t − 7) + t ⇔ y = 5t – 14  t ∈ ℤ

Nên nghiệm nguyên của phương trình là  x = 2 t − 7 y = 5 t − 14 t ∈ ℤ

Vì x, y nguyên âm nên  x < 0 y < 0 ⇒ 2 t − 7 < 0 5 t − 14 < 0 ⇒ t < 7 1 t < 14 5 ⇒ t < 14 5

mà  t ∈ ℤ ⇒ t ≤ 2

Vậy nghiệm cần tìm là (−3; −4)

Đáp án: C

5 tháng 1 2018

\(x^2=\frac{20142-8y^2}{5}\)(1)
Do x nguyên nên 20142-8y2 chia hết cho 5=> 8y2 có tận cùng là 2
y={+-2;+-3;+-7;+-8;+-12;+-13;+-17;+-18;+-22;+-23;+-27;+-28;+-32;+-33;+-37;+-38;+-42;+-43;+-47;+-48}
Thay tất cả giá trị của y vào (1) => k có giá trị nào của y thỏa mãn x nguyên 
Vậy pt trên vô nghiệm

8 tháng 2 2019

PT \(\Leftrightarrow\left(3x^2-5x\right)-2xy+\left(y+2\right)=0\)

Xét \(\Delta'=y^2-\left(y+2\right)\ge0\Leftrightarrow y^2-y-2\ge0\)

\(\Leftrightarrow-y^2+y+2\le0\Leftrightarrow\left(y-2\right)\left(y+1\right)\)

\(\Leftrightarrow-1\le y\le2\)

Thế vô làm tiếp :v