Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x\left(x^2+1\right)-3\left(x^2+1\right)=0\)
Ta có: \(x\left(x^2+1\right)-3\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+1\right)=0\)
Vì \(x^2\ge0\forall x\)\(\Rightarrow x^2+1\ge1\forall x\)
\(\Rightarrow\)Để \(\left(x-3\right)\left(x^2+1\right)=0\)thì \(x-3=0\)\(\Leftrightarrow x=3\)
Vậy nghiệm của đa thức đã cho là \(x=3\)
Con chỉ biết giải thế này thôi.
\(x\left(x^2+1\right)-3\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+1\right)=0\)
TH1 : \(x-3=0\Leftrightarrow x=3\)
TH2 : \(x^2+1=0\Leftrightarrow x^2=-1\left(voli\right)\)
Vậy nghiệm của đa thức là 3
Đa thức trên có nghiệm
\(\Leftrightarrow x^3-x=0\)
\(\Leftrightarrow x\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
Vậy \(x\in\left\{0;1;-1\right\}\)là nghiệm của đa thức
\(2x^2+2x+1=0\)
\(< =>4x^2+4x+2=0\)
\(< =>\left(2x\right)^2+2.2x.1+1^2+1=0\)
\(< =>\left(2x+1\right)^2+1=0\)
Do \(\left(2x+1\right)^2\ge0=>\left(2x+1\right)^2+1>0\)
=> pt voo nghieemj
\(x^2-6x+15=0\)
\(< =>x^2-2.x.3+9+6=0\)
\(< =>\left(x-3\right)^2+6=0\)
Do \(\left(x-3\right)^2\ge0=>\left(x-3\right)^2+6>0\)
=> da thuc vo nghiem
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)
1) Ta có: 2x2 + 2x + 1 = 0
<=> x2 + (x2 + 2x + 1) = 0
<=> x2 + (x+ 1)2 = 0 <=> x = x+ 1 = 0 (Vì x2 \(\ge\) 0 và (x+ 1)2 \(\ge\) 0 với mọi x)
x = x+ 1 => 0 = 1 Vô lý
Vậy đa thức đã cho ko có nghiệm
2) a) x3-2x2-5x+6 = 0
=> x3 - x2 - x2 + x - 6x + 6 = 0
=> ( x3 - x2) - (x2 - x) - (6x - 6) = 0 => x2.(x- 1) - x(x - 1) - 6(x - 1) = 0
=> (x - 1).(x2 - x - 6) = 0 => (x -1).(x2 - 3x + 2x - 6) = 0
=> (x- 1).[x(x - 3) + 2.(x - 3)] = 0 => (x - 1).(x + 2).(x - 3) = 0
=> x- 1= 0 hoặc x + 2 = 0 hoặc x - 3 = 0
=> x = 1 hoặc x = -2 hoặc x = 3
Đa thức đã cho có 3 nghiệm là: 1; -2 ; 3
b) x3 + 3x2 - 6x - 8 = 0
=> x3 + x2 + 2x2 + 2x - 8x - 8 = 0
=> x2.(x + 1) + 2x.(x + 1) - 8 (x + 1) = 0
=> (x+ 1). [x2 + 2x - 8] = 0
=> (x+1).[x2 + 4x - 2x - 8] = 0 => (x +1).[x.(x+4) - 2.(x+4)] = 0
=> (x +1). (x -2). (x+4) = 0
=> x+ 1 hoặc x - 2 = 0 hoặc x+ 4 = 0
=> x = -1 hoặc x = 2 hoặc x = -4
Đa thức đã cho có 3 nghiệm là -1; 2; -4
Giải
1) M(x) = -2x+3 ->-2x+3 =0
->x= 3/2
Vậy nghiệm của M(x) là 3/2
2) P(x) =ax+1 có nghiệm là -2
-> P(-2) =a*(-2)+1=0
-> a= 1/2
Vậy hệ số của P(x) là 1/2
Đặt đa thức x(2x+2)=0
=>2x+2=0
=> 2x=-2
=>x=-1
Vậy 1 là 1 nghiệm của đa thức x(2x+2)
Ta xét x=0=> 0.(2.0+2)=0
Vậy 0 cũng là 1 nghiệm của đa thức trên.