K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2018

Ta có : 

\(P\left(x\right)=11-2x^3+4x^4+5x-x^4-2x\)

\(\Rightarrow P\left(x\right)=\left(4x^4-x^4\right)-2x^3+\left(5x-2x\right)+11\)

\(\Rightarrow P\left(x\right)=3x^4-2x^3+3x+11\)

\(Q\left(x\right)=2x^4-x+4-x^3+3x-5x^4+3x^3\)

\(\Rightarrow Q\left(x\right)=\left(2x^4-5x^4\right)+\left(3x^3-x^3\right)+\left(3x-x\right)+4\)

\(\Rightarrow Q\left(x\right)=-3x^4+2x^3+2x+4\)

\(H\left(x\right)=P\left(x\right)+Q\left(x\right)\)

\(\Rightarrow H\left(x\right)=3x^4-2x^3+3x+11+-3x^4+2x^3+2x+4\)

\(\Rightarrow H\left(x\right)=5x+15\)

\(\Rightarrow H\left(x\right)=5\left(x+3\right)\)

Xét \(H\left(x\right)=0\)

\(\Rightarrow5\left(x+3\right)=0\)

\(\Rightarrow x+3=0\)

\(\Rightarrow x=-3\)

Vậy \(x=-3\)là nghiệm của đa thức \(H\left(x\right)\)

12 tháng 4 2019

1. Ta có \(|3x-1|=\frac{1}{2}\)

\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)

Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha

Sai thì thôi nha bn mik cx chưa lm dạng này bh

13 tháng 4 2019

Câu 1:

\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)

\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)

\(=x^2+9x+1\)

Ta có: \(\left|3x-1\right|=\frac{1}{2}\)

TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)

\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)

TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)

\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)

11 tháng 5 2018

Tìm nghiệm của đa thức sau:

a) P(x)= x2+4x+3

x+ 4x + 3 = 0

<=> x2 + x + 3x + 3 = 0

<=> x(x + 1) + 3(x + 1) = 0

<=> (x + 1)(x + 3) = 0

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}}\) 

Vậy x = -1 ; x = -3 là nghiệm của đa thức P(x)

b) Q(x)= 2x2-5x+3

2x- 5x + 3 = 0

<=> 2x2 - 2x - 3x + 3 = 0

<=> (2x2 - 2x) - (3x - 3) = 0

<=> 2x(x - 1) - 3(x - 1) = 0

<=> (x - 1)(2x - 3) = 0

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{2}\end{cases}}}\)

Vậy x = 1 ; x = 3/2 là nghiệm của đa thức Q(x)

c) R(x)= 2x2-x-1

2x- x - 1 = 0

<=> 2x2 - 2x + x - 1 = 0

<=> 2x(x - 1) + (x - 1) = 0

<=> (x - 1)(2x + 1) = 0

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-1}{2}\end{cases}}}\)

Vậy x = 1 ; x = -1/2 là nghiệm của đa thức R(x)

d) S(x)= 3x2-x-4

3x- x - 4 = 0

<=> 3x2 + 3x - 4x - 4 = 0

<=> (3x2 + 3x) - (4x + 4) = 0

<=> 3x(x + 1) - 4(x + 1) = 0

<=> (x + 1)(3x - 4) = 0

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\3x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{4}{3}\end{cases}}}\)

Vậy x = -1 ; x = 4/3 là nghiệm của đa thức S(x)

12 tháng 5 2018

a) Cho P(x) = 0

=> x2 + 4x + 3 = 0

=> x+ x + 3x + 3 = 0

=> (x2+x) + ( 3x + 3) = 0

=> x(x+1) + 3(x+ 1) = 0

=> (x+3).(x+1) = 0

=> x+3= 0 hoặc x+1 = 0

=> x= 0-3 hoặc x=0-1

=> x= -3 hoặc x= -1

Vậy x= -3 và x = -1 là nghiệm của đa thức P(x) = x2+4x+3

15 tháng 5 2016

\(P\left(x\right)=-4x^4+3x^3+4x^2+3x+6\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=-x^5-2x^4+x^3+7x^2+2x+\frac{25}{4}\)

\(P\left(x\right)-Q\left(x\right)=x^5-6x^4+5x^3+x^2+4x+\frac{23}{4}\)

15 tháng 5 2016

P(x) = -4x^4 + (5x^3 - 2x^3) + 4x^2 + 3x + 6

       = -4x^4 + 3x^3 + 4x^2 + 3x + 6

Q(x) = -x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4

P(x) + Q(x) = (-4x^4 + 3x^3 + 4x^2 + 3x + 6) + (-x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4)

                   = -4x^4 + 3x^3 + 4x^2 + 3x + 6 - x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4

                   = -x^5 - (4x^4 - 2x^4) + (3x^3 - 2x^3) + (4x^2 + 3x^2) + (3x - x) + (6 + 1/4)

                   = -x^5 - 2x^4 + x^3 + 7x^2 + 2x + 25/4

P(x) - Q(x) = (-4x^4 + 3x^3 + 4x^2 + 3x + 6) - (-x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4)

                  = -4x^4 + 3x^3 + 4x^2 + 3x + 6 + x^5 - 2x^4 + 2x^3 - 3x^2 + x - 1/4

                  = x^5 - (4x^4 + 2x^4) + (3x^3 + 2x^3) + (4x^2 - 3x^2) + (3x + x) + (6 - 1/4)

                  = x^5 - 6x^4 + 5x^3 + x^2 + 4x + 23/4

Chúc bạn học tốtok

1 tháng 7 2019

1) 30x-30x^2-31

2)6x^4-2x^3-15x^2+23x-6

22 tháng 4 2017

a. Sắp xếp theo lũy thừa giảm dần của biến:

\(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\dfrac{1}{4}\)

b. P(x) - Q(x)=\(\left(5x^5-4x^4-2x^3+4x^2+3x+6\right)-\left(-x^5+2x^4-2x^3+3x^2-x+\dfrac{1}{4}\right)\)

=\(5x^5-4x^4-2x^3+4x^2+3x+6+x^5-2x^4+2x^3-3x^2+x-\dfrac{1}{4}\)

=\(\left(5x^5+x^5\right)+\left(-4x^4-2x^4\right)+\left(-2x^3+2x^3\right)+\left(4x^2-3x^2\right)+\left(3x+x\right)+\left(6-\dfrac{1}{4}\right)\)

=\(6x^5-6x^4+x^2+4x+\dfrac{23}{4}\)

c.Ta có:\(P\left(-1\right)=5.\left(-1\right)^5-4.\left(-1\right)^4-2.\left(-1\right)^3+4.\left(-1\right)^2+3.\left(-1\right)+6\)

= -5 -4 +2 +4 -3 +6

= 0

\(Q\left(x\right)=-\left(-1\right)^5+2.\left(-1\right)^4-2.\left(-1\right)^3+3.\left(-1\right)^2-\left(-1\right)+\dfrac{1}{4}\)

= 1 + 2 +2 +3 +1 +\(\dfrac{1}{4}\)

= \(\dfrac{37}{4}\ne0\)

Vậy x=-1 là nghiệm của đa thức P(x) nhưng k là nghiệm của đa thức Q(x)

6 tháng 4 2017

Đáp án đúng phải là

\(h\left(x\right)=2x^5+5x^4+x^3-x^2-3x+6\)

18 tháng 4 2018

P(x)-Q(x)= 4x3-9x2+5x