Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,2n+1 chia hết cho n-5
2n-10+11 chia hết cho n-5
Suy ra n-5 thuộc Ư[11]
......................................................
tíc giùm mk nha
Ta có: n-3⋮⋮n²+4
⇒(n-3)(n+3)⋮⋮n²+4
⇒n²-9⋮⋮n²+4
⇒(n²+4)-13⋮⋮n²+4
⇒n²+4∈Ư(13)={±1;±13}
n²+4 1 -1 13 -13
n² -3(l) -5(l) 9 -17 (l)
n ±3
Vậy n∈{±3}
a) \(n-4\)\(⋮\)\(n-1\)
\(\Leftrightarrow\)\(\left(n-1\right)-3\)\(⋮\)\(n-1\)
Ta thấy \(n-1\)\(⋮\)\(n-1\)
\(\Rightarrow\)\(3\)\(⋮\)\(n-1\)
hay \(n-1\)\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta lập bảng sau:
\(n-1\) \(-3\) \(-1\) \(1\) \(3\)
\(n\) \(-2\) \(0\) \(2\) \(4\)
Vậy....
a) \(n-4\)\(⋮\)\(n-1\)
\(\Leftrightarrow\)\(\left(n-1\right)-3\)\(⋮\)\(n-1\)
Ta thấy \(n-1\)\(⋮\)\(n-1\)
\(\Rightarrow\)\(3\)\(⋮\)\(n-1\)
hay \(n-1\)\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta lập bảng sau:
\(n-1\) \(-3\) \(-1\) \(1\) \(3\)
\(n\) \(-2\) \(0\) \(2\) \(4\)
Vậy....
ta có: n+3 là bội của n^2 - 7
=> n+3 chia hết cho n^2 - 7
=> (n+3).( n-3) chia hết cho n^2 -7
=> n.(n-3) + 3.(n-3) = n^2 - 3n + 3n - 9 = n^2 -9 chia hết cho n^2 - 7
=> n^2 - 7- 2 chia hết cho n^2 -7
mà n^2 - 7 chia hết cho n^2 -7
=> 2 chia hết cho n^2 -7
\(\Rightarrow n^2-7\inƯ_{\left(2\right)}=\left(2;-2;1;-1\right)\)
nếu n^2 - 7 = 2 => n^2 = 9 => n = 3 hoặc n = - 3 ( TM)
n^2 - 7 = - 2 => n^2 = 5 => \(n=\sqrt{5}\) hoặc \(n=-\sqrt{5}\)( Loại)
n^2 - 7 = 1 => n^2 = 8 => \(n=\sqrt{8}\)hoặc \(n=-\sqrt{8}\) ( Loại)
n^2 - 7 = - 1 => n^2 = 6 => \(n=\sqrt{6}\) hoặc \(n=-\sqrt{6}\) ( Loại)
KL: n =3 hoặc n = -3