\(n^2+3^n\)là số cp

Cho x,y>0 và \(x^2y+x+1\l...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2019

áp dụng bất đẳng thức Cauchy ta có :

\(\frac{\left(x-1\right)^2}{z}+\frac{z}{4}\ge2\sqrt{\frac{\left(x-1\right)^2}{z}\frac{z}{4}}=|x-1|=1-x.\)

\(\frac{\left(y-1\right)^2}{x}+\frac{x}{4}\ge2\sqrt{\frac{\left(y-1\right)^2}{x}\frac{x}{4}}=|y-1|=1-y.\)

\(\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge2\sqrt{\frac{\left(z-1\right)^2}{y}\frac{y}{4}}=|z-1|=1-z.\)

\(\Rightarrow\frac{\left(x-1\right)^2}{z}+\frac{z}{4}+\frac{\left(y-1\right)^2}{x}+\frac{x}{4}+\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge1-x+1-y+1-z.\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\ge3-\left(x+y+z\right)-\frac{x+y+z}{4}=3-2-\frac{2}{4}=\frac{1}{2}.\)

Vậy GTNN của \(A=\frac{1}{2}\Leftrightarrow x=y=z=\frac{2}{3}.\)

26 tháng 5 2019

1. Cho 3 số thực x,y,z thỏa mãn x+y+z=xyz và x,y,z>1

Tìm GTNN của P= x-1/y+y-1/x+ x-1/x2

               Giải

Từ gt⇒1xy+1yz+1zx=1⇒1xy+1yz+1zx=1

Theo AM-GM ta có:

P=∑(x−1)+(y−1)y2−∑1y+∑1y2=∑(x−1)(1x2+1y2)−∑1y+∑1y2≥∑(x−1).2xy−∑1y+∑1y2=∑1y+∑1y2−2≥√3∑1xy+∑1xy−2=√3−1P=∑(x−1)+(y−1)y2−∑1y+∑1y2=∑(x−1)(1x2+1y2)−∑1y+∑1y2≥∑(x−1).2xy−∑1y+∑1y2=∑1y+∑1y2−2≥3∑1xy+∑1xy−2=3−1

Dấu = xảy ra⇔x=y=z=1√3

P/S: ĐỀ BÀI TƯƠNG TỰ NÊN BẠN TỰ LÀM NHA !! CHÚC HOK TỐT!

1 tháng 6 2019

em viết nhầm đề nha.M = \(\frac{y}{\sqrt{xy}-x}+\frac{x}{\sqrt{xy}+y}-\frac{x+y}{\sqrt{xy}}\)mới đúng

13 tháng 10 2019

\(S=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+\frac{3}{2xy}+4xy\ge\frac{4}{\frac{1}{4}}+\frac{3}{2xy}+384xy-380xy\)

\(\ge16+2\cdot24-380xy=64-380xy\)

+) \(\frac{1}{2}\ge x+y\ge2\sqrt{xy}\Rightarrow\frac{1}{4}\ge4xy\Leftrightarrow\frac{1}{16}\ge xy\)

\(\Rightarrow-380xy\ge380\cdot\frac{1}{16}=23.75\)

\(\Rightarrow S\ge64-23.75=40.25\)

Dấu = xảy ra khi x=y=1/4

14 tháng 10 2019

Tại sao \(\frac{1}{x^2+y^2}+\frac{1}{2xy}\le\frac{\left(1+1\right)^2}{\left(x+y\right)^2}\)  ?

2 tháng 8 2020

Bài 2 : 

Tìm min : Bình phương 

Tìm max : Dùng B.C.S ( bunhiacopxki )

Bài 3 : Dùng B.C.S

2 tháng 8 2020

KP9

nói thế thì đừng làm cho nhanh bạn ạ

Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích