Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
a) a=9 ; b=3 ; m=9 ; n=3. a chia hết cho m thì bằng: 9:9=1 ; b chia hết cho những thì bằng: 3:3=1.
a.b chia hết cho m.n thì bằng : 9.9 chia hết cho 3.3 = 9.9=81 chia hết cho 3.3=9.
Vậy là xong câu a. Bạn có thể tìm số khác nhưng phải làm sao cho số a chia hết cho số b. Còn m=a ; những=b
b) a chia hết cho b = 9 chia hết cho 3; a mũ m chia hết cho b mũ m = 9^9 chia hết cho 3^3. Vì 9 chia hết cho 3 mà.
Mà a=9 ; b=3 ; m=9. Các số này đều thuộc tập hợp N luôn.
Mình giải xong rồi đó. tick cho mình đi. Thank