K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2018

\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2002}-1\right)\left(\frac{1}{2003}-1\right)\)

    \(=\left(-\frac{1}{2}\right)\left(-\frac{2}{3}\right)...\left(-\frac{2001}{2002}\right)\left(-\frac{2002}{2003}\right)\)

     \(=\frac{-1.\left(-2\right).....\left(-2001\right)\left(-2002\right)}{2.3....2002.2003}\)

      \(=\frac{1}{2003}\)

8 tháng 6 2016

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

\(2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)

\(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)

\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2001}{2003}\)

\(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2001}{2003}\)

\(\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2001}{2003}:2\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(-\frac{1}{x+1}=\frac{2001}{4006}-\frac{1}{2}\)

\(-\frac{1}{x+1}=-\frac{1}{2003}\)

\(\Rightarrow x+1=2003\)

\(\Rightarrow x=2012\)

 

 

8 tháng 6 2016

Ta có: \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+..+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)

\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{2003}:2\)

\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Rightarrow\frac{2003}{4006}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Rightarrow\frac{1}{x+1}=\frac{2003}{4006}-\frac{2001}{4006}\)

\(\Rightarrow\frac{1}{x+1}=\frac{2}{4006}=\frac{1}{2003}\)

=> x + 1 = 2003

=> x = 2002

Vậy x = 2002

Duyệt nha !!!

chúc hk tốt!!!

1 tháng 10 2018

a, \(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{7}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)

\(=\frac{1\frac{25}{108}.320\frac{1}{25}+46\frac{3}{4}}{4\frac{16}{21}:\left(-1\frac{20}{21}\right)}=\frac{330\frac{1}{25}}{-2\frac{18}{41}}=\)\(-135,3164\)

21 tháng 6 2015

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

<=>\(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{2003}\cdot\frac{1}{2}=\frac{2001}{4006}\)

<=>\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)

<=>\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

<=>\(\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}\)

<=>\(\frac{1}{x+1}=\frac{1}{2003}\)

<=>x+1=2003

<=>x=2002

8 tháng 6 2016

13 +16 +110 +....+1x(x+1):2 =20012003 

26 +212 +220 +....+2x(x+1) =20012003 

2(12.3 +13.4 +14.5 +....+1x(x+1) )=20012003 

12 −13 +13 −14 +14 −15 +....+1x −1x+1 =20012003 :2=20014006 

12 −1x+1 =20014006 

1x+1 =12 −20014006 =12003 

=> x+1 = 2003

=> x = 2003 - 1

=> x = 2002

 Xin 1 tích đúng 

8 tháng 6 2016

\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+.....+\frac{2}{x.\left(x+1\right)}=\frac{2001}{2003}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2001}{2003}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2001}{2003}\)

\(\Rightarrow\frac{x-1}{x+1}=\frac{2001}{2003}\)

\(\Rightarrow2x=4004\)

\(\Rightarrow x=2002\)

17 tháng 3 2019

a)\(\left[6.\left(-\frac{1}{3}\right)^2-3\left(-\frac{1}{3}\right)+1\right]:\left(-\frac{1}{3}-1\right)\)

\(=\frac{\left[6\left(-\frac{1}{3}\right)^2+3\left(-\frac{1}{3}\right)+1\right]}{-\frac{1}{3}}-\frac{\left[6\left(-\frac{1}{3}\right)^2-3\left(-\frac{1}{3}\right)+1\right]}{-1}\)

\(=\frac{6\left(-\frac{1}{3}\right)^2}{-\frac{1}{3}}+\frac{3\left(-\frac{1}{3}\right)}{-\frac{1}{3}}-\frac{1}{\frac{1}{3}}+6\left(-\frac{1}{3}\right)^2-3\left(-\frac{1}{3}\right)+1\)

\(=6\left(-\frac{1}{3}\right)+3-3+\frac{6.1}{9}+\frac{3}{3}+1\)

\(=-2+3-3+\frac{2}{3}+1+1=\frac{2}{3}\)