Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3^1=3
3^4=81
3^5=243
vậy n=1 đến 5
b)2^(2n-3).2^(8-2n)=2^[2n-3+(8-2n)]=2^(2n-3+8-2n)=2^5
16=2^4<2^n<2^5
n= không có
A! Bạn ơi! Bạn có thể giải thích câu a đc hong. Mình không hiểu cho lắm...
Các n thỏa mãn\(\hept{\begin{cases}n\inℤ\\n>1\end{cases}}\)
bởi \(A=\frac{2\sqrt{n-1}}{\sqrt{n-1}}=2\)không phụ thuộc vào giá trị của biến nên chỉ cần điều kiện xác định của phân thức và căn bậc hai thôi.
Câu 1:
Để A nguyên
=> 3n + 2 chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n - 1
Có 3n - 3 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5)
=> n - 1 thuộc {1; -1; 5; -5}
=> n thuộc {2; 0; 6; -4}
Câu 2:
\(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}\)
\(=2^{18}\left(2^3-1\right)=2^{18}.7\)
\(=2^{16}.2^2.7\)
\(=2^{16}.14\)chia hết cho 14
=> \(8^7-2^{18}\text{ chia hết cho }14\)(Đpcm)
a)
\(\frac{16}{2^x}=2\)
\(\Rightarrow2^{x+1}=16\)
\(\Rightarrow2^{x+1}=2^4\)
\(\Rightarrow x+1=4\)
\(\Rightarrow x=3\)
b)
\(\frac{\left(-3\right)^x}{81}=-27\)
\(\Rightarrow\left(-3\right)^x=-\left(3^3.3^4\right)\)
\(\Rightarrow-3^x=-3^7\)
=> x=7
c)
\(8^n:2^n=4\)
\(\Rightarrow2^{3n}:2^n=4\)
\(\Rightarrow2^{3n-n}=4\)
\(\Rightarrow2^{2n}=2^2\)
=>2n=2
=>n=1
a)\(\frac{16}{2^n}=2\)
=>16:2n=2
=>2n=16:2
=>2n=8
b)ko nhớ cách làm
c)8n:2n=4
=>(23)n:2n=22
=>23n:2n=22
=>23n-n=22
=>22n=22
=>2n=2
=>n=1
dc rùi chứ
1
\(A=\frac{2019^{2019}+1}{2019^{2020}+1}< \frac{2019^{2019}+1+2018}{2019^{2020}+1+2018}=\frac{2019^{2019}+2019}{2019^{2020}+2019}=\frac{2019\left(2019^{2018}+1\right)}{2019\left(2019^{2019}+1\right)}\)
\(=\frac{2019^{2018}+1}{2019^{2019}+1}\)
2
\(M=\frac{100^{101}+1}{100^{100}+1}< \frac{100^{101}+1+99}{100^{100}+1+99}=\frac{100^{101}+100}{100^{100}+100}=\frac{100\left(100^{100}+1\right)}{100\left(100^{99}+1\right)}\)
\(=\frac{100^{100}+1}{100^{99}+1}=N\)
\(\frac{1}{8}.16^n=2^n\)
\(16^n=2^n:\frac{1}{8}\)
\(16^n=2^n.8\)
\(16^n=2^n.2^3\)
\(\left(2^4\right)^n=2^{n+3}\)
\(2^{4n}=2^{n+3}\)
\(\Rightarrow4n=n+3\)
\(4n-n=3\)
\(3n=3\)
\(n=1\)
\(KL:n=1\)
CHÚC BN HỌC TỐT!!!!!