Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A có giá trị nguyên thì \(3n+9⋮n-4\)
\(\Rightarrow3n-9-3.\left(n-4\right)⋮n-4\)
\(\Rightarrow3n-9-3n+12⋮n-4\)
\(\Rightarrow3⋮n-4\Rightarrow n-4\inƯ\left(3\right)\)
\(\Rightarrow n-4\in\left\{-1;-2;-4;1;2;4\right\}\)
\(\Rightarrow n\in\left\{3;2;0;5;6;8\right\}\)
b) Để B có giá trị nguyên thì \(6n+5⋮2n-1\)
\(\Rightarrow6n+5-3.\left(2n-1\right)⋮2n-1\)
\(\Rightarrow6n+5-6n+3⋮2n-1\)
\(\Rightarrow8⋮2n-1\Rightarrow2n-1\inƯ\left(8\right)\)
Mà 2n - 1 là số lẻ \(\Rightarrow2n-1\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{0;1\right\}\)
* Để A có giá trị nguyên thì 3n + 9 chia hết cho n - 4
Có 3n + 9 = 3. ( n - 4 ) + 21 chia hết cho n - 4
Mà 3. ( n - 4 ) chia hết cho n - 4
3 . ( n - 4 ) + 21 chia hết cho n - 4 <=> 21 chia hết cho n - 4
=> n - 4 thuộc U ( 21 ) = { 1 ; 3 ; 7 ; 21 }
n - 4 = 1 => n = 5
n - 4 = 3 => n = 7
n - 4 = 7 => n = 11
n - 4 = 21 => n = 25
Vậy n = { 5 ; 7 ; 11 ; 25 }
Gọi d là ước chung nguyên tố của 2n + 3 và 4n + 1
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\4n+1⋮d\end{matrix}\right.\)
+) Vì : \(2n+3⋮d;2\in N\)
\(\Rightarrow2\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\)
Mà : \(4n+1⋮d\)
\(\Rightarrow\left(4n+6\right)-\left(4n+1\right)⋮d\)
\(\Rightarrow4n+6-4n-1⋮d\Rightarrow5⋮d\)
\(\Rightarrow\) d là ước của 5 ; d nguyên tố
\(\Rightarrow d=5\)
Với \(d=5\Rightarrow4n+1⋮5\)
\(\Rightarrow5n-n+1⋮5\Rightarrow5n-\left(n-1\right)⋮5\)
Vì : \(n\in N\Rightarrow5n⋮5\)
\(\Rightarrow n-1⋮5\Rightarrow n-1=5k\Rightarrow n=5k+1\)
Thử lại : n = 5k + 1 ( \(k\in N\))
\(2n+3=2\left(5k+1\right)+3=10k+5=5\left(2k+1\right)⋮5\)
\(4n+1=4\left(5k+1\right)+1=20k+5=5\left(4k+1\right)⋮5\)
\(\Rightarrow\) Với n = 5k + 1 thì phân số trên rút gọn được
\(\Rightarrow n\ne5k+1\) thì phân số trên tối giản
Vậy \(n\ne5k+1\)
Hai câu cuối tương tự
a) n + 7 chia hết cho n + 2
n + 2 + 5 chia hết cho n + 2
=> 5 chia hết cho n + 2
=> n + 2 thuộc Ư(5) = {1 ; -1 ; 5 ; -5}
Ta có bảng sau :
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
b) 9 - n chia hết cho n - 3
9 - n + 3 - 3 chia hết cho n - 3
9 - (n - 3) - 3 chia hết cho n - 3
6 - (n - 3) chia hết cho n - 3
=> 6 chia hết cho n - 3
=> n -3 thuộc Ư(o6) = {1 ; -1 ;2 ; -2 ;3 ; -3 ; 6 ; -6}
Còn lại giống a
c) n2 + n + 17 chia hết cho n + 1
n.(n + 1) + 17 chia hết cho n + 1
=> 17 chia hết cho n + 1
Gợi ý :
a) 7 chia hết cho n
b) 5 chia hết cho n-2
c) 2 chia hết cho n+1
d)17 chia hết cho
a)3n+7:n=\(3\frac{7}{n}\) đêr 3n+7 chia hết cho n thì 7 phải chia hết cho n
mà n thuộc N nên n=7 hoặc n=1
b) 2n+3:n-2\(\frac{2n-4+7}{n-2}=2\frac{7}{n-2}\) để 2n+3 chia hết cho n-2 thì n-2 phải thuộc ước của 7
mà n thuộc N nên n-2=7 hoắc n-2=1
=> n=9 hoặc n=3
c) n+3 :n+1=\(\frac{n+1+2}{n+1}=1\frac{2}{n+1}\) để n+3 chia hết cho n+1 thì n+1 phải thuộc ước của 2
mà n thuộc N nên n+1=2 hoặc n+1=1
=> n=1 hoặc n=0
d) 3n+1:11-2n=
a, n+5=(n+1)+4 chia hết cho n + 1
n+1 chia hết cho n+1 nên 4 chia hết n+1
=> n+1 laf uowsc cuar 4 = ( +-1 +-2 +-4 )