Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: A={1/x(x+1)|\(x\in N;1< =x< =5\)}
b: B={x/(x^2-1)|\(x\in N;2< =x< =6\)}
Bài 2:
a: \(A=11+\dfrac{3}{13}-2-\dfrac{4}{7}-5-\dfrac{3}{13}\)
\(=4-\dfrac{4}{7}=\dfrac{24}{7}\)
b: \(B=6+\dfrac{4}{9}+3+\dfrac{7}{11}-4-\dfrac{4}{9}\)
\(=5+\dfrac{7}{11}=\dfrac{62}{11}\)
c: \(C=\dfrac{-5}{7}\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+1+\dfrac{5}{7}=1\)
d: \(D=\dfrac{7}{10}\cdot\dfrac{8}{3}\cdot20\cdot\dfrac{3}{8}\cdot\dfrac{5}{28}\)
\(=\dfrac{20}{10}\cdot7\cdot\dfrac{8}{3}\cdot\dfrac{3}{8}\cdot\dfrac{5}{28}=2\cdot\dfrac{5}{4}=\dfrac{5}{2}\)
1) \(A=1+2+2^2+2^3+......+2^{2015}\)
\(\Leftrightarrow2A=2+2^2+2^3+......+2^{2016}\)
\(\Leftrightarrow2A-A=\left(2+2^2+2^3+......+2^{2016}\right)-\left(1+2+2^2+2^3+......+2^{2015}\right)\)
\(\Leftrightarrow A=2^{2016}-1\)
Vậy \(A=2^{2016}-1\)
6)Ta có: \(13+23+33+43+.......+103=3025\)
\(\Leftrightarrow2.13+2.23+2.33+2.43+.......+2.103=2.3025\)
\(\Leftrightarrow26+46+66+86+.......+206=6050\)
\(\Leftrightarrow\left(23+3\right)+\left(43+3\right)+\left(63+3\right)+\left(83+3\right)+.......+\left(203+3\right)=6050\)
\(\Leftrightarrow23+43+63+83+.......+203+3.10=6050\)
\(\Leftrightarrow23+43+63+83+.......+203+=6050-30\)
\(\Leftrightarrow23+43+63+83+.......+203+=6020\)
Vậy S=6020
b, B có 19 thừa số
=> \(-B=(1-\frac{1}{4})(1-\frac{1}{9})(1-\frac{1}{16})...(1-\frac{1}{400}) \)
<=>\(-B=\frac{(2-1)(2+1)(3-1)(3+1)(4-1)(4+1)...(20-1)(20+1)}{4.9.16...400} \)
<=>\(-B=\frac{(1.2.3.4...19)(3.4.5...21)}{(2.3.4.5.6...20)(2.3.4.5...20)} \)
<=>\(-B=\frac{21}{20.2} =\frac{21}{40} \)
<=>\(B=\frac{-21}{40} \)
a: \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{1}{x}-\dfrac{4}{y}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{2}{x}-\dfrac{8}{y}=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{y}=11\\\dfrac{1}{x}-\dfrac{4}{y}=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\\dfrac{1}{x}=-3+\dfrac{4}{y}=-3+4=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{36}{x-3}-\dfrac{15}{y+2}=189\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{44}{x-3}=176\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=\dfrac{1}{4}\\\dfrac{15}{y+2}=-13-\dfrac{8}{x-3}=-13-32=-45\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{13}{4}\\y=-\dfrac{1}{3}-2=-\dfrac{7}{3}\end{matrix}\right.\)
a: \(=\left(\dfrac{-48}{12}+\dfrac{-8}{12}+\dfrac{21}{12}\right)\cdot\dfrac{-12}{13}\)
\(=\dfrac{-35}{12}\cdot\dfrac{-12}{13}=\dfrac{35}{13}\)
b: \(=\dfrac{-3}{6}+\dfrac{5}{6}-\dfrac{312}{100}+\dfrac{51}{10}\)
\(=\dfrac{1}{3}-\dfrac{312}{100}+\dfrac{51}{10}=\dfrac{347}{150}\)
c: \(=\left(\dfrac{48}{300}+\dfrac{175}{300}-\dfrac{135}{100}\right)\cdot\dfrac{5}{2}+\dfrac{1}{4}\)
\(=\dfrac{88}{300}\cdot\dfrac{5}{2}+\dfrac{1}{4}=\dfrac{59}{60}\)
\(A=\left(-1,5\right)^2\cdot2\dfrac{2}{3}-\dfrac{1}{6}+\left(\dfrac{4}{7}-\dfrac{2}{5}\right):1\dfrac{1}{35}\)
\(=\left(-\dfrac{3}{2}\right)^2\cdot\dfrac{8}{3}-\dfrac{1}{6}+\left(\dfrac{20}{35}-\dfrac{14}{35}\right):\dfrac{36}{35}\\ =\dfrac{9}{4}\cdot\dfrac{8}{3}-\dfrac{1}{6}+\dfrac{6}{35}\cdot\dfrac{35}{36}\\ =6-\dfrac{1}{6}+\dfrac{1}{6}\\ =6\)
3/ Áp dụng bất đẳng thức AM-GM, ta có :
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)
\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)
\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)
Cộng 3 vế của BĐT trên ta có :
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)
Do đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
a) \(A=\left\{x\in N|x=3k+1;0\le k\le3;k\in z\right\}\)
b) \(B=\left\{x\in Q^+|x=\dfrac{k}{k^2-1};2\le k\le6;k\in N\right\}\)
a: ĐKXĐ: \(\left(2x^2-5x+2\right)\left(x^3+1\right)< >0\)
=>(2x-1)(x-2)(x+1)<>0
hay \(x\notin\left\{\dfrac{1}{2};2;-1\right\}\)
b: ĐKXĐ: x+5<>0
=>x<>-5
c: ĐKXĐ: x4-1<>0
hay \(x\notin\left\{1;-1\right\}\)
d: ĐKXĐ: \(x^4+2x^2-3< >0\)
=>\(x\notin\left\{1;-1\right\}\)
a) A = {\(\dfrac{1}{n\left(n+1\right)}\)| \(n\in\mathbb{N},1\le n\le5\)}
b) B = {\(\dfrac{1}{n^2-1}\)|\(n\in\mathbb{N},2\le n\le6\)\(\)}