\(m^2+3^n=3722\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

Với n=0 thì Pt trở thành \(m^2=3721\Leftrightarrow m=61\)

Với n>0 thì \(3^n⋮3\), mà \(3722\equiv2\left(mod3\right)\)nên \(m^2\equiv2\left(mod3\right)\)( vô lý)

Vậy pt có cặp nghiệm duy nhất (m;n)=(61;0)

8 tháng 11 2017

ta có \(m^2+3^n=3721+1\)

\(\Rightarrow m^2+3^n=61^2+1\)

do m,n là số tự nhiên nên \(\left[{}\begin{matrix}\left\{{}\begin{matrix}m^2=61^2\\3^n=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=61\\n=0\end{matrix}\right.\\\left\{{}\begin{matrix}m^2=1\\3^n=61^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=1\\n\in\varnothing\end{matrix}\right.\end{matrix}\right.\)

vậy m=61 n=0

22 tháng 10 2017

chiu moi hoc lop 6

22 tháng 10 2017

da noi khong hieu

18 tháng 8 2018

ha ha ha

18 tháng 8 2018

ha ha ha

12 tháng 6 2020

Bài cuối có Max nữa nhé, cần thì ib mình làm cho.

Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)

Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)

Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị

18 tháng 6 2020

3/ \(P=\Sigma\frac{\left(3-a-b\right)\left(a-b\right)^2}{3}+\frac{5}{2}abc\ge0\)