Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+2x−2−1x=2x(x−2)x+2x−2−1x=2x(x−2)
⇔x(x+2)x(x−2)−x−2x(x−2)=2x(x−2)⇔x(x+2)x(x−2)−x−2x(x−2)=2x(x−2)
⇔x2+2x−x+2−2=0⇔x2+2x−x+2−2=0
⇔x2+x=0⇔x2+x=0
⇔x(x+1)=0⇔[x=−1x=0
Ta có: 7x2+8xy+7y2=10 (*)
=>4x2+8xy+4y2+3x2+3y2=10
=>4(x+y)2+3(x2+y2)=10
=>3(x2+y2)=10-4(x+y)2
Vậy A lớn nhất khi (x+y)2=0=>x=-y
Amax=10/3
Áp dụng bất đẳng thức Cosy cho 2 số dương ta có:
A=x2+y22xy,
=> Amin khi x=y
Thay vào (*) ta được:
7x2+8x2+7x2=10
=>22x2=10
=>x2=10/22
=> y2=10/22
=>Amin=10/22+10/22=10/11.
Vậy Amin=10/3<=> x=-y
Amax=10/11<=>x=y.
a) =(5x)^2-2*5x+1+3
=(5x-1)^2+3
suy ra min=3
b) = -(x^2-2x+1)-1
=-(x^2-1)^2-1
suy ra Max=-1
c)=(x^2-2x+1)+(y^2-4y+4)+1
=(x^2-1)^2+(y^2-2)^2+1
suy ra Min=1
# mk ko chắc lắm đâu
Vì GTTĐ luôn lớn hơn hoặc bằng 0 với mọi x, do đó :
\(\left|x+1\right|+\left|2x+15\right|+\left|3x+6041\right|\ge0\forall x\)
\(\Leftrightarrow7x\ge0\)
\(\Leftrightarrow x\ge0\)
Từ điều kiện này của x ta có phương trình :
\(x+1+2x+15+3x+6041=7x\)
\(\Leftrightarrow6x+6057=7x\)
\(\Leftrightarrow7x-6x=6057\)
\(\Leftrightarrow x=6057\)
Vậy tập nghiệm của pt là S = { 6057 }
`C=-2x^2+x+1`
`C=-2(x^2-x/2)+1`
`C=-2(x^2-2*x*1/4+1/16)+1+1/8`
`C=-2(x-1/4)^2+9/8<=9/8`
Dấu "=" `<=>x=1/4.`
Ta có: \(C=-2x^2+x+1\)
\(=-2\left(x^2-2\cdot x\cdot\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{9}{16}\right)\)
\(=-2\left(x-\dfrac{1}{4}\right)^2+\dfrac{9}{8}\le\dfrac{9}{8}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{4}\)