Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: =>(2x+3y-1)^2+(2x-3y)=0
=>2x-3y=0 và 2x+3y=1
=>x=1/4; y=1/6
d: =>2y-3=0 và 2x+3y-1=0
=>y=3/2 và 2x=1-3y=1-9/2=-7/2
=>x=-7/4 và y=3/2
Bài 1:
\(x^2+3y^2+2z^2-2x+12y+4z+15=0\)
\(\Leftrightarrow x^2-2x+1+3y^2+12y+12+2z^2+4z+2=0\)
\(\Leftrightarrow\left(x-1\right)^2+3\left(y^2+4y+4\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2=0\)
Dễ thấy: \(\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2\ge0\)
Xảy ra khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\3\left(y+2\right)^2=0\\2\left(z+1\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\\z=-1\end{matrix}\right.\)
Bài 2:
a)\(A=x^2-4xy+5y^2+10x-22y+28\)
\(=x^2-4xy+10x+4y^2-20y+25+y^2-2y+1+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Xảy ra khi \(\left\{{}\begin{matrix}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
b)\(B=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+15\)
\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+15\)
Đặt \(t=x^2-5x+4\) thì ta có:
\(t\left(t+2\right)+15=t^2+2t+1+14\)
\(=\left(t+1\right)^2+14\ge14\)
Xảy ra khi \(t=-1 \)\(\Rightarrow x^2-5x+4=-1\Rightarrow x=\dfrac{5\pm\sqrt{5}}{2}\)
a. \(2x\left(x-5\right)-x\left(2x+3\right)=26\Rightarrow2x^2-10x-2x^2-3x=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
b. \(\left(3y^2-y+1\right)\left(y-1\right)+y^2\left(4-3y\right)=\frac{5}{2}\)
\(\Rightarrow3y^3-3y^2-y^2+y+y-1+4y^2-3y^3=\frac{5}{2}\)\(\Rightarrow2y=\frac{7}{2}\Rightarrow y=\frac{7}{4}\)
c. \(2x^2+3\left(x+1\right)\left(x-1\right)=5x^2+5x\Rightarrow5x^2-3=5x^2+5x\)
\(\Rightarrow x=-\frac{3}{5}\)
a) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=24-11x\)
b) \(\left(4x^2-3y\right)\cdot2y-\left(3x^2-4y\right)\cdot3y\)
\(=8x^2y-6y^2-9x^2y+12y^2\)
\(=6y^2-x^2y\)
c) \(3y^2\left[\left(2x-1\right)+y+1\right]-y\left(1-y-y^2\right)+y\)
\(=3y^2\cdot\left(2x-1+y+1\right)-y\cdot\left(1-y-y^2\right)+y\)
\(=6xy^2-3y^2+3y^3+3y^2-y+y^2+y^3+y\)
\(=4y^3+y^2+6xy^2\)
a: \(=4x^2-25-4x^2+12x-9-12x=-34\)
b: \(=8y^3-12y^2+6y-1-2y\left(4y^2-12y+9\right)-12y^2+12y\)
\(=8y^3-24y^2+18y-1-8y^3+24y^2-18y=-1\)
c: \(=x^3+27-x^3-20=7\)
d: \(=3y\left(9y^2+12y+4\right)-27y^3+1-36y^2-12y-1\)
\(=27y^3+36y^2+12y-27y^3-36y^2-12y\)
=0
( mik k ghi đề nhé bn)
a) (2x)^3 - y^3 + (2x)^3 + y^3 - 16x^3 + 16xy = 16
=> 8x^3 - y^3 + 8x^3 + y^3 - 16x^3 + 16xy = 16
=> 16xy = 16
=> xy = 1
Vì x, y nguyên => x = 1, y = 1 hoặc x = -1, y = -1
mik xin lỗi nha, mik chỉ bt làm câu a
\(P=\left(4x^2-4xy+y^2\right)+\left(x^2+2x+1\right)+3y^2-12y+2026\)
\(P=\left(2y-x-3\right)^2+\left(2x-1\right)^2+2026\)
Pmin =2026 khi x=1/2; y=7/4